All Title Author
Keywords Abstract

Structural and Characteristics of Manganese Doped Zinc Sulfide Nanoparticles and Its Antibacterial Effect against Gram-Positive and Gram-Negative Bacteria

DOI: 10.4236/ojbiphy.2016.61001, PP. 1-9

Keywords: Zinc Sulfide, Nanoparticles, Co-Precipitation Method, Antibacterial Activity

Full-Text   Cite this paper   Add to My Lib


The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism versus two various bacterial strains. The technique of microorganism inactivation was considered as sorts-dependent. Bacillus subtilis showed the largest antibacterial sensitivity (35 mm) to ZnS: Mn2+ nanoparticles at a concentration (50 mM) whereas Escherichia coli offered maximum zone of inhibition (20 mm) at the same concentration. In this study, the results indicated that ZnS:Mn2+ nanoparticles were found to have significant antibacterial activity against Gram-negative (E. coli) and Gram-positive (Bacillus subtilis) bacteria.


[1]  Ueda, N., Maeda, H., Hosono, H. and Kawazoe, H. (1998) Band-Gap Widening of CdO Thin Films. Journal of Applied Physics, 84, 6174-6177.
[2]  Liu, H., Zhang, X. and Li, L. (2007) Role of Point Defects in Room-Temperature Ferromagnetism of Cr-Doped ZnO. Applied Physics Letters, 91, Article ID: 072511.
[3]  Zhu, H., Zhao, F. and Pan, L. (2007) Structural and Magnetic Properties of Mn-Doped CuO Thin Films. Journal of Applied Physics, 101, Article ID: 09H111.
[4]  Ferreira, F.F., Tabacniks, M.H., Fantinia, M.C.A., Fariab, I.C. and Gorensteinb, A. (1996) Electrochromic Nickel Oxide Thin Films Deposited under Different Sputtering Conditions. Solid State Ionics, 86-88, 971-976.
[5]  Li, X.Q., Xu, H.Z., Chen, Z.-S. and Chen, G.F. (2011) Biosynthesis of Nanoparticles by Microorganisms and Their Applications. Journal of Nanomaterials, 16, Article ID: 270974.
[6]  Serrano, T., Cavazos, J., Peña, Y. and Gómez, I. (2014) Synthesis and Characterization of PbS/ZnS Core/Shell Nanoparticles by Microwave Method. Chalcogenide Letters, 11, 21-28.
[7]  Soltani, N., Saion, E. and Hussein, M.Z. (2012) Microwave Irradiation Effects on Hydrothermal and Polyol Synthesis of ZnS Nanoparticles. Chalcogenide Letters, 9, 265-274.
[8]  Nezhad, A.M. and Dizaji, H.R. (2013) Synthesis and Characterization of CdS:Zn Nanoparticles by Microwave Irradiation Method. Journal of Applied Chemistry, 7, 25.
[9]  Singh, K., Sharma, K., Kumer, M., Sundaram, S., Dutta, R. and Pandey, C. (2014) Red Luminescent Manganese-Doped Zinc Sulphide Nanocrystals and Antibacterial Study. Journal of Materials Chemistry B, 2, 522-528.
[10]  Mathew, M., Mohan, J., Manzoor, K., Nair, S., Tamura, H. and Jayakumar, R. (2010) Folate Conjugated Carboxymethyl Chitosan-Manganese Doped Zinc Sulphide Nanoparticles for Targeted Drug Delivery and Imaging of Cancer Cell. Carbohydrate Polymers Elsevier Science, 80, 2442-2448.
[11]  La Porta, F.A., Ferrer, M.M., de Santana Santana, Y.V.B., Raubach, C.W., Longo, V.M., et al. (2013) Synthesis of Wurtzite ZnS Nanoparticles Using the Microwave Assisted Solvothermal Method. Journal of Alloys and Compounds, 556, 153-159.
[12]  Magaldin, S., Mata-Essayag, S., de Capriles, C.H., Colella, M.T., Olaizola, C. and Ontiverous, Y. (2004) Well Diffusion for Antifungal Susceptibility Testing. International Journal of Infectious Diseases, 8, 39-45.
[13]  Rita, J. and Sasi, F.S. (2009) Structural and Optical Properties of ZnS Nanoparticles Synthesized by Solid State Reaction Method. Chalcogenide Letters, 6, 535-539.
[14]  Anayara, B., Amir, H. and Atowar, R. (2012) Effect of Deposition Temperature on the Structural and Optical Properties of Chemically Prepared Nanocrystalline Lead Selenide Thin Films. Beilstein Journal of Nanotechnology, 3, 438-443.
[15]  Dhanam, M., Kavitha, B. and Velumani, S. (2010) An Investigation on Silar Cu(In1-xAlx)Se2 Thin Films. Materials Science and Engineering: B, 174, 209-215.
[16]  Dhanam, M., Kavitha, B., Neetha, J. and Devasia Dheera, P. (2009) Analysis of ZnS Nanoparticles Prepared by Surfactant Micelle-Temperature Inducing Reaction. Chalcogenide Letters, 6, 713-722.
[17]  Sarma, K., Sarma, R. and Das, H.L. (2008) Structural Characterization of Thermally Evaporated CdSe Thin Films. Chalcogenide Letters, 5, 153-163.
[18]  Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M. and Manuspiya, H. (2012) Synthesis and Luminescence Properties of ZnS and Metal (Mn, Cu)-Doped-ZnS Ceramic Powder. Solid State Sciences, 14, 299-304.
[19]  Wang, C., Liu, L., Zhang, A., Xie, P., Lu, J. and Zou, X. (2012) Antibacterial Effects of Zinc Oxide Nanoparticles on Escherichia coli K88. African Journal of Biotechnology, 11, 10248-10254.
[20]  Beveridge, T.J. and Murray, R.G. (1980) Sites of Metal Deposition in the Cell Wall of Bacillus subtilis. Journal of Bacteriology, 141, 876-887.
[21]  Liang, X.X., Sun, M.X., Li, L.C., Qiao, R., Chen, K.Y., Xiao, Q.S. and Xu, F. (2012) Preparation and Antibacterial Activities of Polyaniline/Cu0.05Zn0.95O Nanocomposites. Dalton Transactions, 41, 2804-2811.
[22]  Dasgupta, A., Dastidar, S.G., Shiratki, Y. and Motohashi, N. (2008) Antibacterial Activity of Artificial Phenothiazines and Isoflavones from Plants. In: Motohashi, N., Ed., Bioactive Heterocycles VI, Topics in Heterocyclic Chemistry, Vol. 15, Springer, Berlin, 67-132.
[23]  Jeyaseeli, L., Dasgupta, A., Dastidar, S.G., Molnar, J. and Amaral, L. (2012) Evidence of Significant Synergism between Antibiotics and the Antipsychotic, Antimicrobial Drug Flupenthixol. European Journal of Clinical Microbiology & Infectious Diseases, 31, 1243-1250.
[24]  Tsao, N., Luh, T.Y., Chou, C.K., Chang, T.Y., Wu, J.J., Liu, C.C. and Lei, H.Y. (2002) In Vitro Action of Carboxyfullerene. Journal of Antimicrobial Chemotherapy, 49, 641-649.
[25]  Koch, M., Reynolds, F., Merkle, P., Weissleder, R. and Josephson, L. (2005) Transport of Surface-Modified Nanoparticles through Cell Monolayers. ChemBioChem, 6, 337-345.
[26]  Yoon, K., Hoon Byeon, J., Park, J.H. and Hwang, J. (2007) Susceptibility Constants of Escherichia coli and Bacillus subtilis to Silver and Copper Nanoparticles. Science of the Total Environment, 373, 572-575.
[27]  Cioffi, N., Ditaranto, N., Torsi, L., Picca, R.A., Sabbatini, L., Valentini, A., Novello, L., Tantillo, G., Bleve-Zacheo, T. and Zambonin, P.G. (2005) Analytical Characterization of Bioactive Fluoropolymer Ultra-Thin Coatings Modified by Copper Nanoparticles. Analytical and Bioanalytical Chemistry, 381, 607-616.
[28]  Kim, J.H., Cho, H., Ryu, S.E. and Choi, M.U. (2000) Effects of Metal Ions on the Activity of Protein Tyrosine Phosphatase VHR: Highly Potent and Reversible Oxidative Inactivation by Cu2+ Ion. Archives of Biochemistry and Biophysics, 382, 72-80.
[29]  Jones, N., Ray, B., Ranjit, K.T. and Manna, C. (2008) Antibacterial Activity of ZnO Nanoparticles Suspensions on a Broad Spectrum of Microorganisms. FEMS Microbiology Letters, 279, 71-76.
[30]  Hosseinkhani, P., Zand, A.M., Imani, S., Rezayi, M. and Rezaei-Zarchi, S. (2010) Determining the Antibacterial Effect of ZnO Nanoparticle against the Pathogenic Bacterium Shigella dysenteriae (Type 1). International Journal of Nano Dimension, 1, 279-285.


comments powered by Disqus