All Title Author
Keywords Abstract

PLOS Genetics  2015 

Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato

DOI: 10.1371/journal.pgen.1005649

Full-Text   Cite this paper   Add to My Lib


Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato.


[1]  Alexander L, Grierson D. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 2002;53: 2039–2055. pmid:12324528 doi: 10.1093/jxb/erf072
[2]  Adams-Phillips L, Barry C, Giovannoni J. Signal transduction systems regulating fruit ripening. Trends in Plant Science. 2004. pp. 331–338. pmid:15231278 doi: 10.1016/j.tplants.2004.05.004
[3]  Giovannoni JJ. Genetic Regulation of Fruit Development and Ripening. 2004;16: 170–181. doi: 10.1105/tpc.019158
[4]  Lelievre J-M, Latche A, Jones B, Bouzayen M, Pech J-C. Ethylene and fruit ripening. Physiol Plant. 1997;101: 727–739. doi: 10.1034/j.1399-3054.1997.1010408.x
[5]  Barry CS, Llop-Tous MI, Grierson D. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 2000;123: 979–986. pmid:10889246 doi: 10.1104/pp.123.3.979
[6]  Hamilton AJ, Lycett GW, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature. 1990. pp. 284–287. doi: 10.1038/346284a0
[7]  Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A. Reversible inhibition of tomato fruit senescence by antisense RNA. Science. 1991;254: 437–439. pmid:1925603 doi: 10.1126/science.1925603
[8]  Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latché A, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nat Biotechnol. 1996;14: 862–866. pmid:9631011 doi: 10.1038/nbt0796-862
[9]  Nakatsuka a, Murachi S, Okunishi H, Shiomi S, Nakano R, Kubo Y, et al. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol. 1998;118: 1295–305. pmid:9847103 doi: 10.1104/pp.118.4.1295
[10]  Rick CM, Butler L. Cytogenetics of the Tomato. Adv Genet. 1956;8: 267–382. doi: 10.1016/s0065-2660(08)60504-0
[11]  Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ. The never ripe mutation blocks ethylene perception in tomato. Plant Cell. 1994;6: 521–30. pmid:8205003 doi: 10.2307/3869932
[12]  Kevany BM, Taylor MG, Klee HJ. Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. Plant Biotechnol J. 2008;6: 295–300. pmid:18086233 doi: 10.1111/j.1467-7652.2007.00319.x
[13]  Yang Y, Wu Y, Pirrello J, Regad F, Bouzayen M, Deng W, et al. Silencing Sl-EBF1 and Sl-EBF2 expression causes constitutive ethylene response phenotype, accelerated plant senescence, and fruit ripening in tomato. 2010;61: 697–708. doi: 10.1093/jxb/erp332
[14]  Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. Plant J. 2008;55: 301–10. doi: 10.1111/j.1365-313X.2008.03505.x. pmid:18397374
[15]  Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002;296: 343–6. pmid:11951045 doi: 10.1126/science.1068181
[16]  Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, et al. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J. 2008;55: 212–223. doi: 10.1111/j.1365-313X.2008.03491.x. pmid:18363783
[17]  Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009;60: 1081–95. doi: 10.1111/j.1365-313X.2009.04064.x. pmid:19891701
[18]  Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, et al. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. Plant Cell. 2009;21: 3041–62. doi: 10.1105/tpc.109.066936. pmid:19880793
[19]  Manning K, T?r M, Poole M, Hong Y, Thompson AJ, King GJ, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38: 948–52. pmid:16832354 doi: 10.1038/ng1841
[20]  Pirrello J, Prasad N, Zhang W, Chen K, Mila I, Zouine M, et al. Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biology. 2012. p. 190. doi: 10.1186/1471-2229-12-190. pmid:23057995
[21]  Tigchelaar EC, McGlasson WB. Genetic Regulation of Tomato Fruit Ripening [Internet]. Tigchelaar E.C.; 1978. doi: 10.1071/pp9780449
[22]  Shinozaki Y, Hao S, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, et al. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant J. 2015;83: 237–51. doi: 10.1111/tpj.12882. pmid:25996898
[23]  Vendrell m. Effect of abscisic acid and ethephon on several parameters of ripening. 1985;40: 19–24. doi: 10.1016/0168-9452(85)90158-x
[24]  Manning K. Changes in gene expression during strawberry fruit ripening and their regulation by auxin. Planta. 1994. doi: 10.1007/bf00201035
[25]  Cohen Jerry D. In vitro tomato fruit cultures demonstrate a role for indole-3-acetic acid in regulating fruit ripening. J Am Soc Hortic Sci. 1996;121: 520–524.
[26]  Davies C, Boss PK, Robinson SP. Treatment of Grape Berries, a Nonclimacteric Fruit with a Synthetic Auxin, Retards Ripening and Alters the Expression of Developmentally Regulated Genes. Plant Physiol. 1997;115: 1155–1161. pmid:12223864
[27]  Aharoni A, Keizer LCP, Van Den Broeck HC, Blanco-Portales R, Mu?oz-Blanco J, Bois G, et al. Novel insight into vascular, stress, and auxin-dependent and -independent gene expression programs in strawberry, a non-climacteric fruit. Plant Physiol. 2002;129: 1019–1031. pmid:12114557 doi: 10.1104/pp.003558
[28]  Jones B, Frasse P, Olmos E, Zegzouti H, Li ZG, Latché A, et al. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J. 2002;32: 603–13. pmid:12445130 doi: 10.1046/j.1365-313x.2002.01450.x
[29]  Liu K, Kang BC, Jiang H, Moore SL, Li H, Watkins CB, et al. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. Plant Mol Biol. 2005;58: 447–464. pmid:16021332 doi: 10.1007/s11103-005-6505-4
[30]  Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, et al. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17: 2676–2692. pmid:16126837 doi: 10.1105/tpc.105.033415
[31]  Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, et al. Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell. 2009;21: 1428–52. doi: 10.1105/tpc.108.060830. pmid:19435935
[32]  Sagar M, Chervin C, Mila I, Hao Y, Roustan J-P, Benichou M, et al. Sl-ARF4, an Auxin Response Factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol. 2013. doi: 10.1104/pp.113.213843
[33]  Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997;276: 1865–1868. pmid:9188533 doi: 10.1126/science.276.5320.1865
[34]  Guilfoyle TJ, Ulmasov T, Hagen G. The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cellular and Molecular Life Sciences. 1998. pp. 619–627. pmid:9711229 doi: 10.1007/s000180050190
[35]  Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19: 309–319. pmid:10476078 doi: 10.1046/j.1365-313x.1999.00538.x
[36]  Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin- response factors. Proc Natl Acad Sci USA. 1999;96: 5844–5849. pmid:10318972 doi: 10.1073/pnas.96.10.5844
[37]  Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol. 2007;10: 453–60. pmid:17900969 doi: 10.1016/j.pbi.2007.08.014
[38]  Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M. Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol. 2012;53: 659–72. doi: 10.1093/pcp/pcs022. pmid:22368074
[39]  Zouine M, Fu Y, Chateigner-Boutin A-L, Mila I, Frasse P, Wang H, et al. Characterization of the tomato ARF gene family uncovers a multi-levels post-transcriptional regulation including alternative splicing. PLoS One. 2014;9: e84203. doi: 10.1371/journal.pone.0084203. pmid:24427281
[40]  Guillon F, Philippe S, Bouchet B, Devaux M-F, Frasse P, Jones B, et al. Down-regulation of an Auxin Response Factor in the tomato induces modification of fine pectin structure and tissue architecture. J Exp Bot. 2008;59: 273–88. doi: 10.1093/jxb/erm323. pmid:18267945
[41]  Ottenschl?ger I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, et al. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci U S A. 2003;100: 2987–2991. pmid:12594336 doi: 10.1073/pnas.0437936100
[42]  Lincoln JE, Campbell AD, Oetiker J, Rottmann WH, Oeller PW, Shen NF, et al. LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-1-carboxylate synthase gene of tomato (Lycopersicon esculentum). Expression in Escherichia coli, structural characterization, expression characteristics, and phylogenetic analysis. J Biol Chem. 1993;268: 19422–19430. pmid:8366090
[43]  Gray J, Picton S, Shabbeer J, Schuch W, Grierson D. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol. Kluwer Academic Publishers; 1992;19: 69–87. doi: 10.1007/bf00015607
[44]  Tieman DM, Taylor MG, Ciardi JA, Klee HJ. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. Proc Natl Acad Sci U S A. 2000;97: 5663–5668. doi: 10.1073/pnas.090550597
[45]  Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7: 173–182. pmid:7756828 doi: 10.2307/3869993
[46]  Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 2000;12: 393–404. pmid:10715325 doi: 10.2307/3870944
[47]  Zhang Z, Zhang H, Quan R, Wang X-C, Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 2009;150: 365–77. doi: 10.1104/pp.109.135830. pmid:19261734
[48]  Lee JM, Joung J-G, McQuinn R, Chung M-Y, Fei Z, Tieman D, et al. Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J. 2012;70: 191–204. doi: 10.1111/j.1365-313X.2011.04863.x. pmid:22111515
[49]  Liu M, Pirrello J, Kesari R, Mila I, Roustan J-P, Li Z, et al. A dominant repressor version of the tomato Sl-ERF.B3 gene confers ethylene hypersensitivity via feedback regulation of ethylene signaling and response components. Plant J. 2013;76: 406–19. doi: 10.1111/tpj.12305. pmid:23931552
[50]  Chung M-Y, Vrebalov J, Alba R, Lee J, McQuinn R, Chung J-D, et al. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J. 2010;64: 936–47. doi: 10.1111/j.1365-313X.2010.04384.x. pmid:21143675
[51]  Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, et al. Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell. 2011;23: 923–41. doi: 10.1105/tpc.110.081273. pmid:21398570
[52]  Liu M, Diretto G, Pirrello J, Roustan J-P, Li Z, Giuliano G, et al. The chimeric repressor version of an Ethylene Response Factor (ERF) family member, Sl-ERF.B3, shows contrasting effects on tomato fruit ripening. New Phytol. 2014. doi: 10.1111/nph.12771
[53]  Barry CS, Giovannoni JJ. Ethylene and Fruit Ripening. J Plant Growth Regul. 2007;26: 143–159. doi: 10.1007/s00344-007-9002-y
[54]  Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, et al. The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell. 2012;24: 4437–51. doi: 10.1105/tpc.112.103283. pmid:23136376
[55]  Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L. Interaction study of MADS-domain proteins in tomato. J Exp Bot. 2008;59: 2253–2265. doi: 10.1093/jxb/ern094. pmid:18487636
[56]  Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ. The Tomato MADS-Box Transcription Factor RIPENING INHIBITOR Interacts with Promoters Involved in Numerous Ripening Processes in a COLORLESS NONRIPENING-Dependent Manner. PLANT PHYSIOLOGY. 2011. pp. 1568–1579. doi: 10.1104/pp.111.181107. pmid:21941001
[57]  Wang S, Lu G, Hou Z, Luo Z, Wang T, Li H, et al. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. J Exp Bot. 2014. doi: 10.1093/jxb/eru137
[58]  Salma C, Alain L, Claude PJ, Mondher B. Tomato Aux/IAA3 and HOOKLESS are important actors of the interplay between auxin and ethylene during apical hook formation. Plant Signal Behav. 2009;4: 559–60. doi: 10.4161/psb.4.6.8748
[59]  Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, et al. Sl-IAA3, a tomato Aux / IAA at the crossroads of auxin and ethylene signalling involved in differential growth. 2009;60: 1349–1362. doi: 10.1093/jxb/erp009
[60]  Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM. Carotenoid Biosynthesis during Tomato Fruit Development (Evidence for Tissue-Specific Gene Expression). Plant Physiol. 1994;105: 405–413. pmid:12232210
[61]  Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J. 2000;24: 413–9. pmid:11069713 doi: 10.1046/j.1365-313x.2000.00880.x
[62]  Ronen G, Cohen M, Zamir D, Hirschberg J. Regulation of carotenoid biosynthesis during tomato fruit development: Expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J. 1999;17: 341–351. pmid:10205893 doi: 10.1046/j.1365-313x.1999.00381.x
[63]  Ronen G, Carmel-Goren L, Zamir D, Hirschberg J. An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci U S A. 2000;97: 11102–11107. pmid:10995464 doi: 10.1073/pnas.190177497
[64]  Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, et al. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell. 2005;17: 2954–2965. pmid:16243903 doi: 10.1105/tpc.105.036053
[65]  Bramley P, Teulieres C, Blain I, Schuch W. Biochemical Characterization of Transgenic Tomato Plants in which Carotenoid Synthesis Has Been Inhibited Through the Expression of Antisense RNA to pTOM5. Plant J. 1992;2: 343–349. doi: 10.1111/j.1365-313x.1992.00343.x
[66]  Bird CR, Smith CJS, Ray JA, Moureau P, Bevan MW, Bird AS, et al. The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. Plant Mol Biol. Kluwer Academic Publishers; 1988;11: 651–662. doi: 10.1007/bf00017465
[67]  Leclercq J, Ranty B, Sanchez-Ballesta MT, Li Z, Jones B, Jauneau A, et al. Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J Exp Bot. 2005;56: 25–35. pmid:15501910 doi: 10.1093/jxb/eri003
[68]  Pirrello J, Jaimes-Miranda F, Sanchez-Ballesta MT, Tournier B, Khalil-Ahmad Q, Regad F, et al. Sl-ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 2006;47: 1195–1205. pmid:16857696 doi: 10.1093/pcp/pcj084


comments powered by Disqus