All Title Author
Keywords Abstract


DOI: 10.11834/jig.20150604

Keywords: 背景减除,混合高斯模型,onlineK-means,onlineEM,灰度值

Full-Text   Cite this paper   Add to My Lib




[1]  Shen Y, Hu W, Liu J, et al. Efficient background subtraction for real-time tracking in embedded camera networks[C]//Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. Toronto, ON, Canada: ACM, 2012: 295-308.
[2]  Bouwmans T. Recent advanced statistical background modeling for foreground detection-a systematic survey[J]. Recent Patents on Computer Science, 2011, 4(3): 147-176.
[3]  Liu X, Liu H, Qiang Z P, et al. Adaptive background modeling based on mixture gaussian model and frame subtraction[J]. Journal of Image and Graphics, 2008,13(4):729-734.[刘鑫, 刘辉, 强振平, 等. 混合高斯模型和帧间差分相融合的自适应背景模型[J]. 中国图象图形学报, 2008, 13(4): 729-734.][DOI:10.11834/jig.20080422]
[4]  Liu Z, Huang K, Tan T. Foreground object detection using top-down information based on em framework[J]. IEEE Transactions on Image Processing, 2012, 21(9): 4204-4217.
[5]  KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection[M]//Video-Based Surveillance Systems. Berlin: Springer, 2002: 135-144.
[6]  Apolinário L, Armesto N, Cunqueiro L. An analysis of the influence of background subtraction and quenching on jet observables in heavy-ion collisions[J]. Journal of High Energy Physics, 2013, 22: 1-33.
[7]  Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC: IEEE, 1999, 22(3):747-757.
[8]  Shah M, Deng J, Woodford B. Illumination invariant background model using mixture of gaussians and SURF features[C]//Computer Vision-ACCV 2012 Workshops. Berlin Heidelberg: Springer, 2013: 308-314.
[9]  Li Y, Li L. A novel split and merge EM algorithm for gaussian mixture model[C]// Proceedings of the 5th International Conference on Natural Computation. Tianjin: IEEE, 2009, 6: 479-483.
[10]  Singh A, Jaikumar P, Mitra S K, et al. Detection and tracking of objects in low contrast conditions[C]// Proceedings of IEEE National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics. Gandhinagar, India: IEEE, 2008: 98-103.
[11]  Alpaydin E. Introduction to Machine Learning[M]. Boston: MIT press, 2004:278-280.
[12]  Moon T K. The expectation-maximization algorithm[J]. Signal processing magazine, IEEE, 1996, 13(6): 47-60.
[13]  Nonaka Y, Shimada A, Nagahara H, et al. Evaluation report of integrated background modeling based on spatio-temporal features[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI: IEEE, 2012: 9-14.
[14]  Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern recognition letters, 2006, 27(7): 773-780.
[15]  Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[M]//Computer Vision―ECCV 2000. Dublin, Ireland:Springer, 2000: 751-767.
[16]  Hou Z Q, Han C Z. A background reconstruction algorithm based on pixel intensity classification[J]. Journal of Software, 2005,16(9):1568-1576.[侯志强, 韩崇昭. 基于像素灰度归类的背景重构算法[J]. 软件学报, 2005, 16(9): 1568-1576.]
[17]  Toyama K, Krumm J, Brumitt B, et al. Wallflower: principles and practice of background maintenance[C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999, 1: 255-261.
[18]  Goyette N, Jodoin P M, Porikli F, et al. Changedetection. net: a new change detection benchmark dataset[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI: IEEE, 2012: 1-8.


comments powered by Disqus