All Title Author
Keywords Abstract

催化学报  2015 

利用多功能、多用途的可再生甲酸实现化学品的绿色与可持续合成

DOI: 10.1016/S1872-2067(15)60861-0, PP. 1461-1475

Keywords: 甲酸,新型催化,可再生氢能源,环境友好型试剂,化学合成,生物精炼

Full-Text   Cite this paper   Add to My Lib

Abstract:

?近年来,随着化石资源日趋短缺以及由此带来的人类生存环境日益恶化,生物质等可再生资源的高效、可持续利用已成为各国科学家研究与关注的焦点.甲酸,生物精炼中的主要副产物之一,具备廉价易得、无毒、能量密度高以及可再生可降解等特性,将其应用于新能源利用与化学转化,不仅有助于甲酸应用领域的进一步拓展,还有助于解决面向未来的生物精炼技术中的一些共性瓶颈问题.本文简要回顾了甲酸利用的研究历史,总结了甲酸作为高效、多用途试剂与原料在化学品合成及生物质催化转化等方面的最新研究进展,并对利用甲酸活化来实现高效化学转化的基本原理及催化体系进行了对比分析,指出今后研究重点应着眼于努力提高甲酸的利用效率,同时实现高选择性合成两方面,并在此基础上进一步拓展其应用领域.在化学品合成方面,甲酸作为一种环境友好可再生的多功能试剂可应用于多种官能团的选择转化过程.作为一种高含氢量的氢转移试剂或还原剂,甲酸相较传统氢气具有操作简便可控、条件温和、具有良好化学选择性等优点,广泛应用于醛酮、硝基、亚胺、腈、炔烃、烯烃等的选择还原以制取相应的醇、胺、烯烃和烷烃类化合物,以及醇类和环氧化物的氢解和官能团去保护等过程.鉴于甲酸亦可用作C1原料,作为多用途的关键基础试剂甲酸还可应用于包括喹啉衍生物的还原甲酰化、胺类化合物甲酰化和甲基化,烯烃羰化以及炔烃还原水合等多级串联反应,是实现精细复杂有机分子高效简约绿色合成的重要途径.该类过程的挑战在于寻求对甲酸及特定官能团的可控活化兼具高选择性和高活性的多功能催化剂.此外,近期有研究表明以甲酸为C1原料还可通过催化歧化反应直接高选择性合成甲醇等大宗化学品.在生物质催化转化方面,甲酸的多功能特性为实现绿色、安全、高原子经济性生物精炼过程提供了潜在可能.生物质资源是储量最大、最具潜力的可持续替代资源,但将其转化为可利用的资源形式仍然面临挑战.甲酸的酸性质及良好溶剂特性可应用于生物质原料预处理过程,实现木质纤维素组分分离和纤维素提取,相较传统无机酸预处理体系具有沸点低、易分离、不引入无机离子、对下游反应兼容性强等优点;而作为高效氢源,甲酸也被广泛研究应用于生物质平台化合物选择催化转化制高附加值化学品、木质素降解制芳烃化合物和生物油加氢脱氧精制处理等过程,相较依赖H2的传统氢化过程具有转化效率高、反应条件温和,简便安全并可有效减少相关生物精炼过程中化石资源的物耗与能耗等优势.最新研究表明,通过在温和条件下甲酸水溶液中解聚氧化木质素,可得到重量比大于60%的低分子量芳烃溶液,这一创新性发现为从木质素中直接提取高值芳香化学物等化学品带来了新的机遇.综上所述,生物基甲酸在绿色有机合成和生物质转化等方面表现出巨大潜力,而其多功能性和多用途性对于实现原料的高效利用及目标产物的高选择性至关重要.该领域目前已取得了一定成果并得到了快速发展,然而距实际产业应用还有相当距离,需要进一步探索.今后的研究重点应着眼于以下几个方面:(1)如何针对特定反应优选合适的催化活性金属及反应体系;(2)如何在其他原料和试剂存在条件下高效、可控地活化甲酸;(3)如何从分子层面理解复杂反应的反应机制;(4)如何在相关过程中稳定相应催化剂.展望未来,基于现代社会对环境、经济和可持续发展的需求,甲酸化学将得到产业界与学术界越来越多的关注和研究.

References

[1]  Kamm B, Gruber P R, Kamm M. Biorefineries-Industrial Processes and Products: Status Quo and Future Directions. Vol. 1. Weinheim: Wiley-VCH, 2006.
[2]  Grasemann M, Laurenczy G. Energy Environ Sci, 2012, 5: 8171
[3]  Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic Synthesis. Chichester: Wiley, 2001.
[4]  Blaser H U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv Synth Catal, 2003, 345: 103
[5]  Wang W F, Zhang Y F, Li J Q, Ding K N. Chin J Catal (王文峰, 章永凡, 李俊篯, 丁开宁. 催化学报), 2004, 25: 129
[6]  Chen T, Wu G P, Feng Z C, Hu G S, Su W G, Ying P L, Li C. Chin J Catal (陈涛, 吴国鹏, 冯兆池, 胡庚申, 苏伟光, 应品良, 李灿. 催化学报), 2008, 29: 105
[7]  Ertl G, Kn?zinger H, Schüth F, Weitkamp J. Handbook of Heterogeneous Catalysis. 2nd Ed. Weinheim: Wiley-VCH, 2008.
[8]  Gibson H W. Chem Rev, 1969, 69: 673
[9]  Sabatier P, Mailhe A. Compt Rend, 1911, 152: 1044
[10]  Miller A J M, Heinekey D M, Mayer J M, Goldberg K I. Angew Chem Int Ed, 2013, 52: 3981
[11]  Savourey S, Lefèvre G, Berthet J-C, Thuéry P, Genre C, Cantat T. Angew Chem Int Ed, 2014, 53: 10466
[12]  Gladiali S, Alberico E. Chem Soc Rev, 2006, 35: 226
[13]  Talwar D, Wu X F, Saidi O, Salguero N P, Xiao J L. Chem Eur J, 2014, 20: 12835
[14]  Wienh?fer G, Westerhaus F A, Junge K, Beller M. J Organomet Chem, 2013, 744: 156
[15]  Mizugaki T, Kanayama Y, Ebitani K, Kaneda K. J Org Chem, 1998, 63: 2378
[16]  Liu P N, Gu P M, Deng J G, Tu Y Q, Ma Y P. Eur J Org Chem, 2005: 3221
[17]  Li J, Zhang Y M, Han D F, Gao Q, Li C. J Mol Catal A, 2009, 298: 31
[18]  Yu J Q, Wu H C, Ramarao C, Spencer J B, Ley S V. Chem Commun, 2003: 678
[19]  Vilches-Herrera M, Werkmeister S, Junge K, B?rner A, Beller M. Catal Sci Technol, 2014, 4: 629
[20]  Banerjee A A, Mukesh D. J Chem Soc, Chem Commun, 1988: 1275
[21]  Jouannin C, Dez I, Gaumont A C, Taulemesse J M, Vincent T, Guibal E. Appl Catal B, 2011, 103: 444
[22]  Tuteja J, Nishimura S, Ebitani K. RSC Adv, 2014, 4: 38241
[23]  Jagadeesh R V, Banerjee D, Arockiam P B, Junge H, Junge K, Pohl M-M, Radnik J, Brückner A, Beller M. Green Chem, 2015,17: 898
[24]  Yu J Q, Spencer J B. Chem Commun, 1998: 1935
[25]  Wagh Y S, Asao N. J Org Chem, 2015, 80: 847
[26]  Bulushev D A, Ross J R H. Catal Today, 2011, 163: 42
[27]  Gong L H, Cai Y Y, Li X H, Zhang Y N, Su J, Chen J S. Green Chem, 2014, 16: 3746
[28]  Shimizu I, Oshima M, Nisar M, Tsuji J. Chem Lett, 1986: 1775
[29]  Ley S V, Mitchell C, Pears D, Ramarao C, Yu J Q, Zhou W Z. Org Lett, 2003, 5: 4665
[30]  Liu X H, Lu G Z, Guo Y L, Guo Y, Wang Y S, Wang X H. J Mol Catal A, 2006, 252: 176
[31]  Sawadjoon S, Lundstedt A, Samec J S M. ACS Catal, 2013, 3: 635
[32]  Weir J R, Patel B A, Heck R F. J Org Chem, 1980, 45: 4926
[33]  Elamin B, Anantharamaiah G M, Royer G P, Means G. J Org Chem, 1979, 44: 3442
[34]  Gowda D C. Indian J Chem B, 2002, 41: 1064
[35]  Wang C, Pettman A, Bacsa J, Xiao J L. Angew Chem Int Ed, 2010, 49: 7548
[36]  Amin R, Ardeshir K, Heider Ali A N, Zahra T R. Chin J Catal (催化学报), 2011, 32: 60
[37]  Muthukur Bhojegowd M R, Nizam A, Pasha M A. Chin J Catal (催化学报), 2010, 31: 518
[38]  Sajadi S M, Maham M, Rezaei A. Lett Org Chem, 2014, 11: 49
[39]  Hosseini-Sarvari M, Sharghi H. J Org Chem, 2006, 71: 6652
[40]  Habibi D, Nasrollahzadeh M, Sahebekhtiari H. J Mol Catal A, 2013, 378: 148
[41]  Kulkarni A, Gianatassio R, T?r?k B. Synthesis, 2011: 1227
[42]  Tao L, Zhang Q, Li S S, Liu X, Liu Y M, Cao Y. Adv Synth Catal, 2015, 357: 753
[43]  Sorribes I, Junge K, Beller M. Chem Eur J, 2014, 20: 7878
[44]  Savourey S, Lefèvre G, Berthet J-C, Cantat T. Chem Commun, 2014, 50: 14033
[45]  Mura M G, De Luca L, Giacomelli G, Porcheddu A, Adv Synth Catal, 2012, 354: 3180
[46]  Li J, Wang C, Xue D, Wei Y W, Xiao J L. Green Chem, 2013, 15: 2685
[47]  Zeng M S, Li L, Herzon S B. J Am Chem Soc, 2014, 136: 7058
[48]  Li Y H, Sorribes I, Yan T, Junge K, Beller M. Angew Chem Int Ed, 2013, 52: 12156
[49]  Beydoun K, vom Stein T, Klankermayer J, Leitner W. Angew Chem Int Ed, 2013, 52: 9554
[50]  Hsu T A, Ladisch M R, Tsao G T. Chem Technol, 1980, 10: 315
[51]  Marzialetti T, Miller S J, Jones C W, Agrawal P K. J Chem Technol Biotechnol, 2011, 86: 706
[52]  Xu J, Thomsen M H, Thomsen A B. J Microbiol Biotechnol, 2009, 19: 845
[53]  Yu G, Li B, Liu C, Zhang Y D, Wang H S, Mu X D. Ind Eng Chem Res, 2013, 50: 750
[54]  Jahan M S, Chowdhunry D A N, Islam M K. Ind Crops Prod, 2007, 26: 324
[55]  Abeywickrama C J, Timilsena Y P, Rakshit S K, Chrusciel L, Brosse N. Ind Eng Chem Res, 2013, 52: 1691
[56]  Xu F, Liu C F, Geng Z C, Sun J X, Sun R C, Hei B H, Lin L, Wu S B, Je J. Polym Degrad Stab, 2006, 91: 1880
[57]  Abou-Yousef H, Hassan E B. Fuel, 2014, 137: 115
[58]  Thananatthanachon T, Rauchfuss T B. ChemSusChem, 2010, 3: 1139
[59]  Tuteja J, Choudhary H, Nishimura S, Ebitani K. ChemSusChem, 2014, 7: 96
[60]  Thananatthanachon T, Rauchfuss T B. Angew Chem Int Ed, 2010, 49: 6616
[61]  Zhou X Y, Rauchfuss T B. ChemSusChem, 2013, 6: 383
[62]  Deng L, Li J, Lai D M, Fu Y, Guo Q X. Angew Chem Int Ed, 2009, 48: 6529
[63]  Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q X. ChemSusChem, 2010, 3: 1172
[64]  Braden D J, Henao C A, Heltzel J, Maravelias C C, Dumesic J A. Green Chem, 2011, 13: 1755
[65]  Du X L, He L, Zhao S, Liu Y M, Cao Y, He H Y, Fan K N. Angew Chem Int Ed, 2011, 50: 7815
[66]  Yuan J, Li S S, Yu L, Liu Y M, Cao Y, He H Y, Fan K N. Energy Environ Sci, 2013, 6: 3308
[67]  Gandarias I, Requies J, Arias P L, Armbruster U, Martin A. J Catal, 2012, 290: 79
[68]  Yuan J, Li S S, Yu L, Liu Y M, Cao Y. Chin J Catal (袁静, 李舒爽, 于磊, 刘永梅, 曹勇. 催化学报), 2013, 34: 2066
[69]  Arceo E, Marsden P, Bergman R G, Ellman J A. Chem Commun: 2009, (23): 3357
[70]  Arceo E, Ellman J A, Bergman R G. ChemSusChem, 2010, 3: 811
[71]  Huang S H, Mahmood N, Tymchyshyn M, Yuan Z S, Xu C B. Bioresour Technol, 2014, 171: 95
[72]  Xu W Y, Miller S J, Agrawal P K, Jones C W. ChemSusChem, 2012, 5: 667
[73]  Toledano A, Serrano L, Balu A M, Luque R, Pineda A, Labidi J. ChemSusChem, 2013, 6: 529
[74]  Forchheim D, Gasson J R, Hornung U, Kruse A, Barth T. Ind Eng Chem Res, 2012, 51: 15053
[75]  Galkin M V, Sawadjoon S, Rohde V, Dawange M, Samec J S M. ChemCatChem, 2014, 6: 179
[76]  Rahimi A, Ulbrich A, Coon J J, Stahl S S. Nature, 2014, 515: 249
[77]  Xiong W M, Fu Y, Zeng F X, Guo Q X. Fuel Process Technol, 2011, 92: 1599
[78]  Tan Z C, Xu X M, Liu Y G, Zhang C S, Zhai Y P, Peng L, Li Y, Zhang R Q. Environ Prog Sustain Energy, 2014, 33: 751
[79]  Wang L, Zhang B S, Meng X J, Su D S, Xiao F S. ChemSusChem, 2014, 7: 1537

Full-Text

comments powered by Disqus