全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

高寒草甸土壤异养呼吸对气候变化和氮沉降响应的模拟

DOI: 10.11686/cyxb2014297, PP. 1-11

Keywords: 高寒草甸,CO2通量,气候变化,氮沉降倍增,CENTURY模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用研究区植被、土壤和气候观测资料,借助CENTURY模型研究了高寒草甸土壤异养呼吸CO2通量动态变化。结果表明,1)CENTURY模型较好地反映了高寒草甸土壤异养呼吸季节变化。模拟结果与试验点观测结果相吻合,风匣口和干柴滩2个试验点观测值与模拟值的线性回归方程分别为y=0.7776x+23.796(R2=0.6885,n=31)和y=0.9487x-8.6994(R2=0.6062,n=30)。2)过去46年(1960-2005年)研究区年平均气温趋于暖化,平均线性增温率为0.35℃/10a。降水量变化不明显,呈振幅较为稳定的波动变化。同期CENTURY模型模拟的高寒草甸土壤异养呼吸CO2通量呈波动性缓慢上升的趋势,通量变化范围在479.22~624.89gC/(m2·a)之间,平均值为(539.56±34.32)gC/(m2·a),通量增加率为16.5gC/(m2·10a)。对模拟结果与气温、降水量之间进行的相关性分析结果显示,土壤异养呼吸CO2通量与气温呈显著正相关(r=0.70,P<0.05),与降水量相关性不显著。3)氮沉降增加显著促进了高寒草甸土壤异养呼吸CO2通量。中氮(MN)和高氮(HN)与对照(CK)处理间差异极显著(P<0.01),但中氮(MN)与高氮(HN)处理间差异不显著。说明,长期受低温和土壤有效氮限制的高寒草甸对气候变化响应敏感,高原气候的暖化和氮沉降的增加均能引起土壤异养呼吸作用的小幅上升,但可能由于异养呼吸作用对氮沉降存在着一定的“氮饱和”现象,随着大气氮沉降的倍增,其促进效应降低。

References

[1]  谢薇, 陈书涛, 胡正华. 中国陆地生态系统土壤异养呼吸变异的影响因素. 环境科学, 2014, 35(1): 334-340.
[2]  于雯超, 宋晓龙, 修伟明, 等. 氮素添加对贝加尔针茅草原凋落物分解的影响. 草业学报, 2014, 23(5): 49-60. 浏览
[3]  曹丛丛, 齐玉春, 董云社, 等. 氮沉降对陆地生态系统关键有机碳组分的影响. 草业学报, 2014, 23(2): 323-332.
[4]  贾丙瑞, 周广胜, 王风玉, 等. 土壤微生物与根系呼吸作用影响因子分析. 应用生态学报, 2005, 16(8): 1547-1552.
[5]  Lisji J, Nissinen A, Erhard M, et al . Climatic effects on litter decomposition from arctic tundra to tropic rain forest. Global Change Biology, 2003, 9(4): 575-584.
[6]  Melillo J M, Steudler P A, Aber J D, et al . Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298(13): 2173-2175.
[7]  Tjoelker M G, Oleksyn J, Reich P B. Acclimation of respiration to temperature and CO 2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biology, 1999, 5(4): 679-691.
[8]  Li H J. Studies on Soil Respiration and its Relations to Environmental Factors in Different Ecosystems[D]. Taiyuan: Shanxi University, 2008.
[9]  Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystems respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130(3-4): 237-253.
[10]  Li Q, Xue H X, Wang Y L, et al . The preliminary study on the impact of soil temperature and moisture on carbon flux over Stipa krylovii ecosystem, Journal of Agro-Environment Science, 2011, 30(3): 605-610.
[11]  Dong Y S, Qi Y C, Liu J Y, et al . The soil respiration flux variation in different rainfall intensity of four kinds of grassland. Chinese Science Bulletin, 2005, 50(5): 473-480.
[12]  Bouma T J, Bryla D R. On the assessment of root and soil respiration for soils of different textures: Interactions with soil moisture contents and soil CO 2 concentrations. Plant and Soil, 2000, 227(1-2): 215-221.
[13]  Silvola J, Alm J, Ahlholm U. The effect of plant roots on CO 2 release from peat soil. Suo, 1992, 43: 259-262.
[14]  Kucera C L, Kirkham D R. Soil respiration studies in tall-grass prairie in Missouri. Ecology, 1971, 52(5): 912-915.
[15]  Upadhyaya S D, Singh V P. Microbial turnover of organic matter in a tropical grassland soil. Pedobiologia, 1981, 21(2): 100-109.
[16]  Coleman D C. Soil carbon balance in a successional grassland. Oikos, 1973, 24: 195-199.
[17]  Xie W, Chen S T, Hu Z H. Factors influencing variability in soil heterotrophic respiration from terrestrial ecosystem in China. Environment Science, 2014, 35(1): 334-340.
[18]  Leirós M C, Trasar-Cepeda C, Gil-Sotres F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 1999, 31(3): 327-335.
[19]  Yu W C, Song X L, Xiu W M, et al . Effects of additional nitrogen on litter decomposition in Stipa baicalensis grassland. Acta Prataculturae Sinica, 2014, 23(5): 49-60.
[20]  Cao C C, Qi Y C, Dong Y S, et al . Effects of nitrogen deposition on critical fractions of soil organic carbon in terrestrial ecosystems. Acta Prataculturae Sinica, 2014, 23(2): 323-332.
[21]  Bowden R D, Davidson E, Savage K, et al . Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196: 43-56.
[22]  Olsson P, Linder S, Giesler R, et al . Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 2005, 11(10): 1745-1763.
[23]  Jia B R, Zhou G S, Wang F Y, et al . Affecting factors of soil microorganism and root respiration. Chinese Journal of Applied Ecology, 2005, 16(8): 1547-1552.
[24]  Emmett B A. The impact of nitrogen on forest soils and feedbacks on tree growth. Water, Air and Soil Pollution, 1999, 116: 65-74.
[25]  白炜. 长江源区高寒草地生态系统变化及其碳排放对气候变化的响应[D]. 兰州: 兰州大学, 2010.
[26]  程国栋, 李培基, 张祥松, 等. 气候变化对中国积雪、冰川和冻土的影响评价[M]. 兰州: 甘肃文化出版社, 1997: 22-56.
[27]  李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究. 气候变化研究进展, 2010, 6(3): 181-186.
[28]  IPCC. Summary for Policy makers of Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.
[29]  Galloway J N, Aber J D, Erisman J W, et al . The nitrogen cascade. Bio-Science, 2003, 53: 341-356.
[30]  Kaiser J. The other global pollutant: nitrogen proves tough to curb. Science, 2001, 294: 1268-1269.
[31]  Moffat A S. Global nitrogen overload problem grows critical. Science, 1989, 244: 776-783.
[32]  Galloway J N, Levy H, Kasibhatla P S. Year 2020: consequence of population growth and development on deposition of oxidized nitrogen. Ambio, 1994, 23: 120-123.
[33]  Pamela M, Kathleen A L, Sharon J H. The globalization of nitrogen deposition: Consequences for terrestrial ecosystem. Ambio, 2002, 31(2): 113-121.
[34]  Bai W. The Effects of Global Climate Changes of Alpine Grassland Ecosystem and its Carbon Emission in Head-water Region of the Yongtze River[D]. Lanzhou: Lanzhou University, 2010.
[35]  Cheng G D, Li P J, Zhang X S, et al . Impacts of Climate Change on Glaciers, Permafrost and Snow Cover in China[M]. Lanzhou: Gansu Culture Press, 1997: 22-56.
[36]  Li L, Chen X G, Wang Z Y, et al . Climate change and its regional differences over the Tibetan plateau. Advances in Climate Change Research, 2010, 6(3): 181-186.
[37]  Ding Y H, Ren G Y, Shi G Y, et al . National assessment report of climate change (I): Climate change in China and its future trend. Advances in Climate Change Research, 2006, 2(1): 3-8.
[38]  Lv C, Tian H. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres (1984-2012), 2007, 112: D22S05, doi:10.1029/2006JD007990.
[39]  Zheng X H, Fu C B, Xu X K, et al . The Asian nitrogen cycle case study. Ambio, 2002, 31: 79-87.
[40]  Galloway J N, Dentener J F, Capone G D, et al . Nitrogen cycles: past, resent and future. Biogeochemistry, 2004, 70: 153-226.
[41]  Yang Y H, Fang J Y, Tang Y H, et al . Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14: 1592-1599.
[42]  Li Y N, Wang Q J, Zhao X Q, et al . The influence of climatic warming on the climatic potential productivity of alpine meadow. Acta Agrestia Sinica, 2000, 18(1): 23-29.
[43]  Zhang J H, Li Y N. The research on effect of climate change on vegetation productivity in Qinghai province. Journal of Arid Land Resources and Environment, 2008, 22(2): 97-102.
[44]  Li Y N, Wang X Q, Gu S, et al . Integrated monitoring of alpine vegetation types and its primary production. Acta Geographica Sinica, 2004, 59(1): 40-48.
[45]  Yang K, Lin E D, Gao Q Z, et al . Simulation of climate change impacts on grassland productivity in Northern Tibet. Chinese Journal of Ecology, 2010, 29(7): 1469-1476.
[46]  Wang G X, Qian J, Cheng G D, et al . Soil organic carbon pool of grassland soils on the Qinghai Tibetan Plateau and its global implication. The Science of the Total Environment, 2002, 291: 207-217.
[47]  Zeng Y N, Feng D, Cao G C, et al . The soil organic carbon storage and its spatial distribution of alpine grassland in the source region of the Yellow river. Acta Geographica Sinica, 2004, 59(4): 497-504.
[48]  Tao Z, Shen C D, Gao Q Z, et al . Soil organic carbon storage and vertical distribution of alpine meadow on the Tibetan plateau. Acta Geographica Sinica, 2006, 61(7): 720-728.
[49]  Zhang Y Q, Tang Y H, Jiang J. The dynamics characteristics of soil organic carbon of grassland on Qinghai Tibet Plateau, Science in China Ser. D Earth Sciences, 2006, 36(12): 1140-1147.
[50]  Toshiyuki O, Mitsuru H, Zhan X Z, et al . Soil organic carbon pools in alpine to nival zones along an altitudinal (4400-5300 m) on the Tibetan Plateau. Polar Science, 2008, 2: 277-285.
[51]  Li D, Huang Y, Wu Q, et al . Modeling dynamics of soil organic carbon in an alpine meadow ecosystem on the Qinghai-Tibetan plateau using CENTURY model. Acta Prataculturae Sinica, 2010, 19(2): 160-168.
[52]  Hu Q W, Cao G M, Wu Q, et al . Comparative study on CO 2 emissions from different types of alpine meadow during grass exuberance period. Journal of Georaphical Science, 2004, 14(2): 167-176.
[53]  Li D, Cao G M, Hu Q W, et al . A primary study on CO 2 emission from alpine Potentilla fruticosa scrub meadow ecosystem. Acta Agrestia Sinica, 2005, 13(2): 144-148.
[54]  Li D, Cao G M, Wu Q, et al . The seasonal change rule of CO 2 release rate in alpine Potentilla fruticosa shrub meadow ecosystem. Pratacultural Science, 2005, 22(5): 4-10.
[55]  Wu Q, Hu Q W, Cao G M, et al . A primary study on CO 2 emission from soil-plant systems of Kobresia humilis meadow. Resources Science, 2005, 27(2): 96-101.
[56]  Zhao L, Xu S X, Li Y N, et al . Relations between carbon dioxide fluxes and environmental factors of Kobresia humilis meadows and Potentilla fruticosa meadows. Acta Botanica Boreali Occidentalia Sinica, 2006, 26(1): 133-142.
[57]  Hu Q W, Wu Q, Cao G M, et al . Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 2008, 50(3): 271-279.
[58]  Zhu T H, Cheng S L, Fang H J, et al . Early responses of soil CO 2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau. Acta Ecologica Sinica, 2011, 31(10): 2687-2696.
[59]  Wu Q, Hu Q W, Cao G M, et al . CO 2 emission from an alpine Kobresia humilis meadow in winters. Acta Ecologica Sinica, 2012, 31(18): 5107-5122.
[60]  Parton W J, Schimel, D S, Cole C V, et al . Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society America Journal, 1987, 51: 1173-1179.
[61]  Smith P, Smith J U, Powlson D S, et al . A comparison of the performance of nine soil organic matter models using datasets from seven longterm experiments. Geoderma, 1997, (81): 153-225.
[62]  Jenkinson D S, Rayner J H. The turnover of organic matter in some of the Rothamsted classical experiments. Soil Science, 1977, 123: 298-305.
[63]  Zhou X M. Kobresia Meadow in China[M]. Beijing: Science Press, 2001.
[64]  Lv X M, Zheng D. Impacts of global change on the alpine meadow ecosystem in the source region of the Yangtze River. Resources and Environment in the Yangtze Basin, 2006, 15(5): 603-607.
[65]  Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48(1): 71-90.
[66]  Qi Y, Xu M, Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 2002, 153(1/2): 131-142.
[67]  Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-582.
[68]  Cao M K, Prince S D, Li K R, et al . Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003, 9(4): 536-546.
[69]  Rustad L E, Campbell J L, Marion G M, et al . A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126: 543-562.
[70]  Luo Y Q, Wan S Q, Hui D F, et al . Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413: 622-624.
[71]  丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1): 3-8.
[72]  李英年, 王启基, 赵新全. 气候变暖对高寒草甸气候生产潜力的影响. 草地学报, 2000, 18(1): 23-29.
[73]  张景华, 李英年. 青海气候变化趋势及对植被生产力影响的研究. 干旱区资源与环境, 2008, 22(2): 97-102.
[74]  李英年, 王学勤, 古松, 等. 高寒植被类型及其植被生产力的监测. 地理学报, 2004, 59(1): 40-48.
[75]  杨凯, 林而达, 高清竹, 等. 气候变化对藏北地区草地生产力的影响模拟. 生态学杂志, 2010, 29(7): 1469-1476.
[76]  曾永年, 冯东, 曹广超, 等. 黄河源区高寒草地土壤有机碳储量及分布特征. 地理学报, 2004, 59(4): 497-504.
[77]  陶贞, 沈承德, 高全洲, 等. 高寒草甸土壤有机碳储量及其垂直分布特征. 地理学报, 2006, 61(7): 720-728.
[78]  张永强, 唐艳鸿, 姜杰. 青藏高原草地生态系统土壤有机碳动态特征. 中国科学D 辑: 地球科学, 2006, 36(12): 1140-1147.
[79]  李东, 黄耀, 吴琴, 等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 2010, 19(2): 160-168. 浏览
[80]  李东, 曹广民, 胡启武, 等. 高寒灌丛草甸生态系统CO 2 释放的初步研究. 草地学报, 2005, 13(2): 144-148.
[81]  李东, 曹广民, 吴琴, 等. 海北高寒灌丛草甸生态系统CO 2 释放速率的季节变化规律. 草业科学, 2005, 22(5): 4-10.
[82]  吴琴, 胡启武, 曹广民, 等. 矮嵩草草甸植被-土壤系统CO 2 的释放特征. 资源科学, 2005, 27(2): 96-101.
[83]  赵亮, 徐世晓, 李英年, 等. 青藏高原矮嵩草草甸和金露梅灌丛草甸CO 2 通量变化与环境因子的关系. 西北植物学报, 2006, 26(1): 0133-0142.
[84]  朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO 2 排放对模拟氮沉降的早期响应. 生态学报, 2011, 31(10): 2687-2696.
[85]  吴琴, 胡启武, 曹广民, 等. 矮嵩草草甸冬季CO 2 的释放特征. 生态学报, 2012, 31(18): 5107-5122.
[86]  周兴民. 中国嵩草草甸[M]. 北京: 科学出版社: 2001.
[87]  吕新苗, 郑度. 气候变化对长江源地区高寒草甸生态系统的影响. 长江流域资源与环境, 2006, 15(5): 603-607.
[88]  李洪建. 不同生态系统土壤呼吸与环境因子的关系研究[D]. 太原: 山西大学, 2008.
[89]  李琪, 薛红喜, 王云龙, 等. 土壤温度和水分对克氏针茅草原生态系统碳通量的影响初探. 农业环境科学学报, 2011, 30(3): 605-610.
[90]  董云社, 齐玉春, 刘纪远, 等. 不同降水强度4种草地群落土壤呼吸通量变化特征. 科学通报, 2005, 50(5):473-480.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133