All Title Author
Keywords Abstract

力学学报  2014 

基于微-细观机理的混凝土疲劳损伤本构模型

DOI: 10.6052/0459-1879-14-041, PP. 911-919

Keywords: 混凝土,疲劳,损伤演化,本构关系,速率过程理论

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文致力于混凝土疲劳损伤发展机理的微细观解释.以速率过程理论为基础,通过考虑裂纹断裂过程区中的水分子动力作用,在细观尺度上建立了具有物理机理的疲劳损伤能量耗散表达式.结合细观随机断裂模型,以宏观损伤力学为框架,建立了疲劳损伤演化方程.通过数值模拟,计算了单轴受拉时的疲劳损伤演化以及不同加载幅度下的疲劳寿命.与相关试验结果的对比显示出该文模型能够很好地表现混凝土材料的疲劳损伤演化过程.

References

[1]  Holmen J. Fatigue of concrete by constant and variable amplitude loading. ACI Special Publication, 1982, 75: 71-110
[2]  Hsu T. Fatigue of plain concrete. ACI Journal, 1981, 78 (4): 292-305
[3]  Kim J, Kim Y. Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research, 1996, 26 (10): 1513-1523
[4]  Gao L, Hsu CTT. Fatigue of concrete under uniaxial compression cyclic loading. ACI Materials Journal, 1998, 95 (5): 575-581
[5]  Breitenbücher R, Ibuk H. Experimentally based investigations on the degradation-process of concrete under cyclic load. Materials and Structures, 2006, 39 (7): 717-724
[6]  Breitenbücher R, Ibuk H, Alawieh H. Influence of cyclic loading on the degradation of mechanical concrete properties. Advances in Construction Materials 2007, 2007: 317-324
[7]  Cornelissen H. Fatigue failure of concrete in tension. Heron, 1984, 29 (4): 1-68
[8]  Bazant ZP, Xu K. Size effect in fatigue fracture of concrete. ACI Materials Journal, 1991, 88 (4): 390-399
[9]  Oh B. Fatigue life distributions of concrete for various stress levels. ACI Materials Journal, 1991, 88 (2): 122-128
[10]  Hillerborg A, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 1976, 6 (6): 773-781
[11]  Hordijk D. Local approach to fatigue of concrete. [PhD Thesis]. Delft: Delft University of Technology, 1991
[12]  Nguyen O, Repetto E, Ortiz M, et al. A cohesive model of fatigue crack growth. International Journal of Fracture, 2001, 110 (4): 351-369
[13]  Yang B, Mall S, Ravi-Chandar K. A cohesive zone model for fatigue crack growth in quasibrittle materials. International Journal of Solids and Structures, 2001, 38 (22-23): 3927-3944
[14]  Marigo J. Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Engineering Fracture Mechanics, 1985, 21 (4): 861-874
[15]  Papa E, Taliercio A. Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete. Engineering Fracture Mechanics, 1996, 55 (2): 163-179
[16]  Alliche A. Damage model for fatigue loading of concrete. International Journal of Fatigue, 2004, 26 (9): 915-921
[17]  Mai SH, Le-Corre F, Foret G, et al. A continuum damage modeling of quasi-static fatigue strength of plain concrete. International Journal of Fatigue, 2012, 37: 79-85
[18]  Suaris W, Ouyang C, Fernando V. Damage model for cyclic loading of concrete. Journal of Engineering Mechanics, 1990, 116 (5): 1020-1035
[19]  Al-Gadhib A, Baluch M, Shaalan A, et al. Damage model for monotonic and fatigue response of high strength concrete. International Journal of Damage Mechanics, 2000, 9 (1): 57
[20]  Lü P, Li Q, Song Y. Damage constitutive of concrete under uniaxial alternate tension-compression fatigue loading based on double bounding surfaces. International journal of solids and structures, 2004, 41 (11-12): 3151-3166
[21]  Tobolsky A, Eyring H. Mechanical properties of polymeric materials. The Journal of Chemical Physics, 1943, 11: 125-134
[22]  Krausz AS, Krausz K. Fracture Kinetics of Crack Growth. Dordrecht: Springer, 1988
[23]  Le JL, Ba?ant ZP, Bazant MZ. Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling. Journal of the Mechanics and Physics of Solids, 2011, 59 (7): 1291-1321
[24]  Mondal P. Nanomechanical properties of cementitious materials. [PhD Thesis]. Evanston: Northwestern University, 2008
[25]  Ulm FJ, Constantinides G, Heukamp FH. Is concrete a poromechanics materials?—A multiscale investigation of poroelastic properties. Materials and Structures, 2004, 37 (1): 43-58
[26]  Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1921, 221: 163-198
[27]  Suresh S. Fatigue of Materials. Cambridge: Cambridge University Press, 1998
[28]  Horn RG, Israelachvili JN. Direct measurement of structural forces between two surfaces in a nonpolar liquid. The Journal of Chemical Physics, 1981, 75 (3): 1400-1411
[29]  Horn RG. Surface forces and their action in ceramic materials. Journal of the American Ceramic Society, 1990, 73 (5): 1117-1135
[30]  Lawn B. Fracture of Brittle Solids. Cambridge: Cambridge University Press, 1993
[31]  李杰, 卢朝辉, 张其云. 混凝土随机损伤本构关系——单轴受压分析. 同济大学学报(自然科学版), 2003, 31 (5): 505-509 (Li Jie, Lu Zhaohui, Zhang Qiyun. Study on stochastic damage constitutive law for concrete material subjected to uniaxial compressive stress. Journal of Tongji University (Natural Science Edition), 2003, 31 (5): 505-509 (in Chinese))
[32]  李杰, 张其云. 混凝土随机损伤本构关系. 同济大学学报(自然科学版), 2001, 29 (10): 1135-1141 (Li Jie, Zhang Qiyun. Study of stochastic damage constitutive relationship for concrete material. Journal of Tongji University (Natural Science Edition), 2001, 29 (10): 1135-1141 (in Chinese))
[33]  Mehta PK, Monteiro PJ. Concrete: Microstructure, Properties, and Materials. New York: McGraw-Hill, 2006
[34]  曾莎洁. 混凝土随机损伤本构模型与试验研究. [博士论文]. 上海: 同济大学, 2012 (Zeng Shajie. Dynamic experimental research and stochastic damage constitutive model for concrete. [PhD Thesis]. Shanghai: Tongji University, 2012 (in Chinese))
[35]  Maali A, Cohen-Bouhacina T, Couturier G, et al. Oscillatory dissipation of a simple confined liquid. Physical Review Letters, 2006, 96 (8): 086105
[36]  Christov NC, Danov KD, Zeng Y, et al. Oscillatory structural forces due to nonionic surfactant micelles: Data by colloidal-probe AFM vs theory. Langmuir, 2009, 26 (2): 915-923
[37]  谢和平. 分形-岩石力学导论. 北京: 科学出版社, 1996 (Xie Heping. Introduction to Fractals-rock Mechanics. Beijing: Science Press, 1996 (in Chinese))
[38]  Johnston WG, Gilman JJ. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. Journal of Applied Physics, 1959, 30 (2): 129-144
[39]  李杰. 混凝土随机损伤本构关系研究新进展. 东南大学学报(自然科学版), 2002, 32 (5): 750-755 (Li Jie. Recent research progress on the stochastic damage constitutional law of concrete. Journal of Southeast University (Natural Science Edition), 2002, 32 (5): 750-755 (in Chinese))
[40]  李杰. 混凝土随机损伤力学的初步研究. 同济大学学报(自然科学版), 2004, 32 (10): 1270-1277 (Li Jie. Research on the stochastic damage mechanics for concrete materials and structures. Journal of Tongji University (Natural Science Edition), 2004, 32 (10): 1270-1277 (in Chinese))

Full-Text

comments powered by Disqus