1 Yao Y B, Liu D M, Tang D Z, et al. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals. Comput Geosci, 2009, 35: 1159-1166
[2]
2 Yao Y B, Liu D M. Adsorption characteristics of coal reservoirs in North China and its influencing factors (in Chinese). J China Univ Min Tech, 2007, 36: 308-314 [姚艳斌, 刘大锰. 华北重点矿区煤储层吸附特征及其影响因素. 中国矿业大学学报, 2007, 36: 308-
[3]
3 Karacan C O, Okandan E. Adsorption and gas transport in coal microstructure: Investigation and evaluation by quantitative X-ray CT imaging. Fuel, 2001, 80: 509-520
[4]
4 Gilman A, Beckie R. Flow of coal-bed methane to a gallery. Transp Porous Media, 2000, 41: 1-16
[5]
5 Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel, 1999, 78: 1333-1344
[6]
6 Eker E, Akin S. Lattice Boltzmann simulation of fluid flow in synthetic fractures. Transp Porous Media, 2006, 65: 363-384
[7]
7 Witherspoon P A, Wang J S Y, Iwai K, et al. Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resour Res, 1980, 16: 1016-1024
[8]
8 Bear J. Dynamics of Fluids in Porous Media. New York: Elsevier, 1972
[9]
9 Snow D T. Anisotropie permeability of fractured media. Water Resour Res, 1969, 5: 1273-1289
[10]
10 Sampath K, Keighim C W. Factors affecting gas slippage in tight sandstones of Cretaceous age in the Uinta Basin. J Petrol Technol, 1982, 34: 2715-2720
[11]
11 Ge H K, Shen Y H, Song Y, et al. Slippage effect of shale gas flow in nanoscale pores (in Chinese). Nat Gas Ind, 2014, 34: 46-54 [葛洪魁, 申颍浩, 宋岩, 等. 页岩纳米孔隙气体流动的滑脱效应. 天然气工业, 2014, 34: 46-
[12]
12 Ziarani A S, Aguilera R. Knudsen's permeability correction for tight porous media. Transp Porous Media, 2012, 91: 239-260
[13]
13 Tang S H, Cai C, Zhu B C, et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs (in Chinese). Nat Gas Ind, 2008, 28: 30-33 [唐书恒, 蔡超, 朱宝存, 等. 煤变质程度对煤储层物性的控制作用. 天然气工业, 2008, 28: 30-
[14]
14 Succi S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. New York: Oxford, 2001
[15]
15 Brown S R, Scholz C H. Broad bandwidth study of the topography of natural rock surfaces. J Geophys Res, 1985, 90: 12512-12575
[16]
16 Lomize G M. Flow in Fractured Rocks. Moscow: Gosemergoizdat, 1951
[17]
17 Louis C. A Study of Groundwater Flow in Jointed Rock and Its Influence on the Stability of Rock Masses. London: Imperial College of Science and Technology, 1969
[18]
18 Louis C. Rock Hydraulics in Rock Mechanics. New York: Springer-Verlag, 1974
[19]
19 Mandelbrot B B. The Fractal Geometry of Nature. New York: Macmillan, 1983
[20]
20 Sangani A S, Acrivos A. Slow flow past periodic arrays of cylinders with application to heat transfer. Int J Multiphas Flow, 1982, 8: 193-206
[21]
21 Tsang Y W. The effect of tortuosity on fluid flow through a single fracture. Water Resour Res, 1984, 20: 1209-1215
[22]
22 Tsang Y W, Tsang C F, Neretnieks I, et al. Flow and tracer transport in fractured media: A variable aperture channel model and its properties. Water Resour Res, 1988, 24: 2049-2060
[23]
23 Cook A M, Myer L R, Cook N, et al. The Effect of Tortuosity on Flow Through a Natural Fracture. Golden: Colorado, 1990
[24]
24 Murata S, Saito T. Estimation of tortuosity of fluid flow through a single fracture. J Can Petrol Technol, 2003, 42: 39-45
[25]
25 Jin Y, Zhu Y B, Wu Y, et al. Numerical investigation of migration mechanism for coal-bed methane flow through cleats with rough surfaces in coal reservoir (in Chinese). J China Coal Soc, 2014, 39: 1826-1834 [金毅, 祝一搏, 吴影, 等. 煤储层粗糙割理中煤层气运移机理数值分析. 煤炭学报, 2014, 39: 1826-
[26]
26 Chen Y, Zhang C, Shi M, et al. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels. Phys Rev E, 2009, 80: 26301
[27]
27 Brown S R. A note on the description of surface roughness using fractal dimension. Geophys Res Lett, 1987, 14: 1095-1098
[28]
28 Xiao W M, Xia C C, Wang W, et al. Study of a new equation for fluid flow through a single rough joint considering tortuosity effect (in Chinese). Chin J Rock Mech Eng, 2011, 30: 2416-2425 [肖维民, 夏才初, 王伟, 等. 考虑曲折效应的粗糙节理渗流计算新公式研究. 岩石力学与工程学报, 2011, 30: 2416-
[29]
29 Ju Y, Zhang Q, Yang Y, et al. An experimental investigation on the mechanism of fluid flow through single rough fracture of rock. Sci China Tech Sci, 2013, 56: 2070-2080
[30]
30 Jin Y, Song H, Hu B, et al. Lattice Boltzmann simulation of fluid flow through coal reservoir's fractal pore structure. Sci China Earth Sci, 2013, 56: 1519-1530
[31]
31 Croce G, D'Agaro P, Nonino C. Three-dimensional roughness effect on microchannel heat transfer and pressure drop. Int J Heat Mass Tran, 2007, 50: 5249-5259
[32]
32 Ju Y, Wang J, Gao F, et al. Lattice-Boltzmann simulation of microscale CH4 flow in porous rock subject to force-induced deformation. Chin Sci Bull, 2014, 59: 3292-3303
[33]
33 Keehm Y, Mukerji T, Nur A. Permeability prediction from thin sections: 3D reconstruction and Lattice-Boltzmann flow simulation. Geo- phys Res Lett, 2004, 31: L4606
[34]
34 Ladd A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J Fluid Mech, 1994, 271: 311-339
[35]
35 Madadi M, Sahimi M. Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces. Phys Rev E, 2003, 67: 26309
[36]
36 Nourgaliev R R, Dinh T N, Theofanous T G, et al. The lattice Boltzmann equation method: Theoretical interpretation, numerics and implications. Int J Multiphas Flow, 2003, 29: 117-169
[37]
37 Wang B Y, Jin Y, Chen Q, et al. Derivation of permeability-pore relationship for fractal porous reservoirs using series-parallel flow resistance model and lattice Boltzmann method. Fractals, 2014, 22: 1440005
[38]
38 Zhang C B, Chen Y P, Deng Z L, et al. Role of rough surface topography on gas slip flow in microchannels. Phys Rev E, 2012, 86: 16319
[39]
39 Wheatcraft S W, Tyler S W. An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour Res, 1988, 24: 566-578
[40]
40 Pitchumani R, Ramakrishnan B. A fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding. Int J Heat Mass Tran, 1999, 42: 2219-2232
[41]
41 Yu B M, Li J H, Li Z H, et al. Permeabilities of unsaturated fractal porous media. Int J Multiphas Flow, 2003, 29: 1625-1642
[42]
42 Cai J, Perfect E, Cheng C, et al. Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir, 2014, 30: 5142-5151
[43]
43 Sun H, Koch M. Fractal generation of surface area of porous media. Stoch Hydrol Hydraul, 1998, 12: 83-96
[44]
44 Sreenivasan K R. Fractals and Multifractals in fluid turbulence. Annu Rev Fluid Mech, 1991, 23: 539-604
[45]
45 Schmittbuhl J, Gentier S, Roux S. Field measurements of the roughness of fault surfaces. Geophys Res Lett, 1993, 20: 639-641
[46]
46 Cox B L, Wang J S Y. Fractal surfaces: Measurement and applications in the earth sciences. Fractals, 1993, 1: 87-115
[47]
47 Vickers B C, Neuman S P, Sully M J, et al. Reconstruction and geostatistical analysis of multiscale fracture apertures in a large block of welded tuff. Geophys Res Lett, 1992, 19: 1029-1032
[48]
48 Auradou H, Drazer G, Boschan A, et al. Flow channeling in a single fracture induced by shear displacement. Geothermics, 2006, 35: 576-588
[49]
49 Croce G, D'Agaro P. Numerical analysis of roughness effect on microtube heat transfer. Superlattice Microst, 2004, 35: 601-616
[50]
50 Madadi M, Sahimi M. Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces. Phys Rev E, 2003, 67: 26309
[51]
51 Zou M, Yu B, Feng Y, et al. A Monte Carlo method for simulating fractal surfaces. Physica A, 2007, 386: 176-186
[52]
52 Dünweg B, Schiller U D, Ladd A J C. Statistical mechanics of the fluctuating lattice Boltzmann equation. Phys Rev E, 2007, 76: 36704
[53]
53 Qian Y H, D'Humieres D, Lallemand P. Lattice BGK models for Navier-Stokes equation. Europhys Lett, 1992, 17: 479-488
[54]
54 Chen S Y, Doolen G D. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech, 1998, 30: 329-364
[55]
55 Sukop M C, Thorne D T. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. Berlin: Springer, 2006
[56]
56 Sukop M C, Huang H B, Alvarez P F, et al. Evaluation of permeability and non-Darcy flow in vuggy macroporous limestone aquifer samples with lattice Boltzmann methods. Water Resour Res, 2013, 49: 216-230
[57]
57 Jin Y, Dong J B, Zheng J L, et al. Kinematical measurement of hydraulic tortuosity of fluid flow in porous media. Int J Mod Phys C, 2015, 26: 1550017
[58]
58 Balankin A S. Physics of fracture and mechanics of self-affine cracks. Eng Fract Mech, 1997, 4: 135-203
[59]
59 Sláme?ka K, Pokluda J, Poní?il P, et al. On the topography of fracture surfaces in bending-torsion fatigue. Eng Fract Mech, 2008, 75: 760-767
[60]
60 Dereziński J. Hypergeometric type functions and their symmetries. Ann Henri Poincaré, 2014, 15: 1569-1653