全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

天山北坡城市群非渗透面下的土壤有机碳特征

DOI: 10.18306/dlkxjz.2015.06.013, PP. 781-789

Keywords: 非渗透面,土壤有机碳,土壤容重,天山北坡城市群,干旱区

Full-Text   Cite this paper   Add to My Lib

Abstract:

城市非渗透面(ImperviousSurfaceAreas,ISA)的覆盖,强烈地改变了区域土壤理化性状,从而在不同尺度上影响着生态系统碳循环。ISA下土壤样品获得的困难性致使对ISA所封存的土壤有机碳(SoilOrganicCarbonbeneathISA,SOCISA)及其分布特征的认识极为缺乏。为揭示ISA下土壤理化特征,本文收集天山北坡城市群在建工程ISA下27个100cm深土壤样品,同时采集对应ISA点邻近的渗透面(PerviousSurfaceAreas,PSA)样品作对比分析。利用Landsat8图像提取了研究区ISA与PSA面积,并结合实测值估算SOC储量。研究发现①干旱区城市100cm深土壤剖面平均SOCISA=5.74±0.39kgC·m-2,显著低于其邻近PSA下的SOC;ISA下土壤容重(BulkDensity,BD)BDISA=1.58±0.02g·cm-3,显著高于其邻近BDPSA约5%(p<0.01)。②两种地表下SOC和BD均随着深度加深而降低,通过与土层深度的线性拟合,SOCISA和BDISA具有明显降低趋势,PSA下SOC和BD并无显著规律;深层土壤(60~100cm)SOCPSA显著高于SOCISA(p<0.05),两者间并无稳定的比例关系。③天山北坡城市群SOCISA为总城市土壤碳库的68%,单个城市SOCISA比例50%以上,SOCISA构成干旱区城市土壤碳库的主体。本文不仅加深了对城市ISA下土壤理化性状的了解,而且对评估城市乃至全球生态系统碳循环及碳评估具有重要意义。

References

[1]  1 蔡运龙, 傅泽强, 戴尔阜. 2002. 区域最小人均耕地面积与耕地资源调控[J]. 地理学报, 57(2): 127-134. [Cai Y L, Fu Z Q, Dai E F. 2002. The minimum area per capita of cultivated land and its implication for the optimization of land resource allocation[J]. Acta Geographica Sinica, 57(2): 127-134.]
[2]  2 程维明, 周成虎, 李建新. 2002. 天山北麓经济发展与绿洲扩张[J]. 地理学报, 57(5): 561-568. [Cheng W M, Zhou C H, Li J X. 2002. Economic development and oasis growth at the northern foot of the Tianshan Mountains.[J]. Acta Geographica Sinica, 57(5): 561-568.]
[3]  3 方创林, 宋吉涛, 张蔷, 等. 2005. 中国城市群结构体系的组成与空间分异格局[J]. 地理学报, 60(5): 827-840. [Fang C L, Song J T, Zhang Q, et al.2005. The formation, development and spatial heterogeneity patterns for the structures system of urban agglomerations in China[J]. Acta Geographica Sinica, 60(5): 827-840.]
[4]  4 宋吉涛, 方创林, 宋敦江. 2006. 中国城市群空间结构的稳定性分析[J]. 地理学报, 61(12): 1311-1325. [Song J T, Fang C L, Song D J. 2006. Spatial sturcture stability of urban agglomerations in China[J]. Acta Geographica Sinica, 61(12): 1311-1325.]
[5]  5 仝川, 董艳. 2007. 城市生态系统土壤碳库特征[J]. 生态学杂志, 26(10): 1616-1621. [Tong C, Dong Y. 2007. Characteristics of soil carbon pool in -urban ecosystem[J]. Chinese Journal of Ecology, 26(10): 1616-1621.]
[6]  6 王绍强, 周成虎, 李克让, 等. 2000. 中国土壤有机碳库及空间分布特征分析[J]. 地理学报, 55(5): 533-544. [Wang S Q, Zhou C H, Li K R, et al.2000. Analysis on spatial distribution characteristics of soil organic carbon reservoir in china[J]. Acta Geographica Sinica, 55(5): 533-544.]
[7]  7 文启孝. 1984. 土壤有机质研究方法[M]. 北京: 农业出版社: 316-318. [Wen Q X. Study methods of soil organic matter[M]. Beijing, China: Agriculture Press, 1984: 316-318.]
[8]  8 吴世新, 周可法, 刘朝霞, 等. 2005. 新疆地区近10年来土地利用变化时空特征与动因分析[J]. 干旱区地理, 28(1): 52-58. [Wu S X, Zhou K F, Liu Z X, et al.2005. Study on the temporal and spatial dynamic changes of land use and driving forces analyses of Xinjiang in recent 10 years[J]. Arid Land Geography, 28(1): 52-58.]
[9]  9 新疆维吾尔自治区农业厅. 1996. 新疆土壤[M]. 北京, 科学出版社. [Agriculture Bureau of Uygur Autonomous region of Xinjiang. 1996. Soil in Xinjiang[M]. Beijing: Science Press.]
[10]  10 新疆维吾尔自治区统计局. 2013. 新疆统计年鉴[M]. 北京, 中国统计出版社. [Statistics Bureau of Xinjiang Uygur Autonomous Region. 2013. Xinjiang Statistical Yearbook[M]. Beijing: China Statistics Press.]
[11]  11 杨金玲, 张甘霖. 2007. 城市功能区、植被类型和利用年限对土壤压实的影响[J]. 土壤, 39(2): 263-269.
[12]  12 [Yang J L, Zhang G L. 2007. Effects of function zone, vegetation type and land use age on soil compaction in urban Nanjing[J]. Soils, 39(2): 263-269.]
[13]  13 于东升, 史学正, 孙维侠, 等. 2005. 基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J]. 应用生态学报, 16(12): 2279-2283. [ Yu D S, Shi X Z, Sun W X, et al.2005. Estimation of China soil organic carbon storage and density based on 1:100000 soil database[J]. Chinese Journal of Applied Ecology, 16(12): 2279-2283.]
[14]  14 Bai X M. 2014. Realizing China's urban dream[J]. Nature, 509: 423-423.
[15]  15 Bell M J, Worrall F, Smith P, et al.2011. UK land-use change and its impact on SOC: 1925-2007[J]. Global Biogeochemical Cycles, 25(4): GB4015.
[16]  16 Bengston D N, Potts R S, Fan D P, et al.2005. An analysis of the public discourse about urban sprawl in the United States: monitoring concern about a major threat to forests[J]. Forest Policy and Economics, 7(5): 745-756.
[17]  17 Bierwagen B G, Theobald D M, Pyke C R, et al.2010. National housing and impervious surface scenarios for integrated climate impact assessments[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(49): 20887-20892.
[18]  18 Cannell M G R, Milne R, Hargreaves K J, et al.1999. National inventories of terrestrial carbon sources and sinks: the UK experience[J]. Climatic Change, 42(3): 505-530.
[19]  19 Churkina G. 2008. Modeling the carbon cycle of urban systems[J]. Ecological Modelling, 216(2): 107-113.
[20]  20 Edmondson J L, Davies Z G, McHugh N, et al.2012. Organic carbon hidden in urban ecosystems[J]. Scientific Reports 2, doi: doi: 10.1038/srep00963
[21]  21 Eigenbrod F, Bell V A, Davies H N, et al.2011. The impact of projected increases in urbanization on ecosystem services[J]. Proceedings of the Royal Society B: Biological Sciences, 278: 3201-3208.
[22]  22 Grimm N B, Faeth S H, Golubiewski N E, et al.2008. Global change and the ecology of cities[J]. Science, 319: 756-760.
[23]  23 Grimm N B, Foster D, Groffman P, et al.2008. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients[J]. Frontiers in Ecology and the Environment, 6(5): 264-272.
[24]  24 Hardin P J, Jensen R R. 2007. The effect of urban leaf area on summertime urban surface kinetic temperatures: A Terre Haute case study[J]. Urban Forestry & Urban Greening, 6(2): 63-72.
[25]  25 Jobbágy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 10(2): 423-436.
[26]  26 Kaye J P, Majumdar A, Gries C, et al.2008. Hierarchical Bayesian scaling of soil properties across urban, agricultural, and desert ecosystems[J]. Ecological Applications, 18(1): 132-145.
[27]  27 Kuang W H, Liu J Y, Zhang Z X, et al.2013. Spatiotemporal dynamics of impervious surface areas across China during the early 21st century[J]. Chinese Science Bulletin, 58(14): 1691-1701.
[28]  28 Laurance W F, Clements G R, Sloan S, et al.2014. A global strategy for road building[J]. Nature, 514: 262-262.
[29]  29 Liu J Y, Zhang Z X, Xu X L, et al.2010. Spatial patterns and driving forces of land use change in China during the early 21st century[J]. Journal of Geographical Sciences, 20(4): 483-494.
[30]  30 Lorenz K, Kandeler E. 2006. Microbial biomass and activities in urban soils in two consecutive years[J]. Journal of Plant Nutrition and Soil Science-Zeitschrift fur Pflanzenernahrung und Bodenkunde, 169(6): 799-808.
[31]  31 Lu D S, Weng Q H. 2004. Spectral mixture analysis of the urban landscape in Indianapolis with landsat ETM plus imagery[J]. Photogrammetric Engineering and Remote Sensing, 70(9): 1053-1062.
[32]  32 Montague T, Kjelgren R. 2004. Energy balance of six common landscape surfaces and the influence of surface properties on gas exchange of four containerized tree species[J]. Scientia Horticulturae, 100(1-4): 229-249.
[33]  33 Pataki D E, Alig R J, Fung A S, et al.2006. Urban ecosystems and the North American carbon cycle[J]. Global Change Biology, 12(11): 2092-2102.
[34]  34 Pickett S T A, Cadenasso M L, Grove J M, et al.2008. Urban ecological systems: linking terrestrial ecological, physical, and socioeconomic components of metropolitan areas[C]//Marzluff J, Shulenberger E, Endlicher W, et al. Urban Ecology. New York: Springer.
[35]  35 Pouyat R V, Yesilonis I D, Nowak D J. 2006. Carbon storage by urban soils in the United States[J]. Journal of Environmental Quality, 35(4): 1566-1575.
[36]  36 Raciti S M, Hutyra L R, Finzi A C. 2012. Depleted soil carbon and nitrogen pools beneath impervious surfaces[J]. Environmental Pollution, 164: 248-251.
[37]  37 Ridd M K. 1995. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities[J]. International Journal of Remote Sensing, 16(12): 2165-2185.
[38]  38 Scalenghe R, Marsan F A. 2009. The anthropogenic sealing of soils in urban areas[J]. Landscape and Urban Planning, 90(1-2): 1-10.
[39]  39 Schaldach R, Alcamo J. 2007. Simulating the effects of urbanization, afforestation and cropland abandonment on a regional carbon balance: a case study for central Germany[J]. Regional Environmental Change, 7(3): 137-148.
[40]  40 Svirejeva-Hopkins A, Schellnhuber H J, Pomaz V L. 2004. Urbanised territories as a specific component of the global carbon cycle[J]. Ecological Modelling, 173(2-3): 295-312.
[41]  41 Tomlinson R W, Milne R M. 2006. Soil carbon stocks and land cover in northern Ireland from 1939 to 2000[J]. Applied Geography, 26(1): 18-39.
[42]  42 Wei Z Q, Wu S H, Zhou S L, et al.2014. Soil organic carbon transformation and related properties in urban soil under impervious surfaces[J]. Pedosphere, 24(1): 56-64.
[43]  43 Wu H B, Guo Z T, Peng C H. 2003. Distribution and storage of soil organic carbon in China[J]. Global Biogeochemical Cycles, 17(2): 1-6.
[44]  44 Xu H Q, Lin D f, Tang F. 2013. The impact of impervious surface development on land surface temperature in a subtropical city: Xiamen, China[J]. International Journal of Climatology, 33(8): 1873-1883.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133