全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

启发式全局偏序挖掘算法*

, PP. 142-147

Keywords: 序列模式挖掘,偏序,全局偏序模型,启发式方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

偏序模型能直观反映序列数据信息,全局偏序模型能进一步从整体上更加准确反映序列的全局信息,方便用户的理解.本文对全局偏序模型的构建方法进行研究,针对基于遍历搜索构建模型所造成的效率较低,不宜扩展的问题,提出基于启发式搜索的全局模型构造改进算法.在模型构造中有效利用频繁序列挖掘算法所获得的局部信息,改进搜索路径,提高算法效率,获得准确结果.

References

[1]  Mannila H, Meek C. Global Partial Orders from Sequential Data // Proc of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston, USA, 2000: 161168
[2]  Goldenberg A, Moore A. Tractable Learning of Large Bayes Net Structures from Sparse Data [EB/OL]. [20040420]. www.autonlab.org/autonweb/14644/version/61part/s/data/goldenbergtractable.pdf?branch=main&language=en
[3]  Goldenberg A Q, Moore A W. Bayes Net Graphs to Understand CoAuthorship Networks? // Proc of the 3rd International Workshop on Link Discovery. Chicago, USA, 2005: 18
[4]  Dempster A P, Laird N M, Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 1977, B(39):138
[5]  Ahuja A K, Magnanti T L, Orlin J H. Network Flows: Theory, Algorithms, and Applications. Englewood Cliffs, USA: PrenticeHall, 1993
[6]  Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules in Large Databases // Proc of the International Conference on Very Large Data Bases. Santiago de Chile, Chile, 1994: 487499
[7]  Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation // Proc of the ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000: 112
[8]  Agrawal R, Srikant R. Mining Sequential Patterns // Proc of the 11th International Conference on Data Engineering. Taipei, China, 1995: 314
[9]  Srikant R, Agrawal R. Mining Sequential Patterns: Generalizations and Performance Improvements // Proc of the 5th International Conference on Extending Database Technology. Avignon, France, 1996: 317
[10]  Peral J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, USA: Morgan Kaufmann, 1988
[11]  Pei Jian, Wang Haixun, Liu Jian, et al. Discovering Frequent Closed Partial Orders from Strings. IEEE Trans on Knowledge and Data Engineering, 2006, 18(11): 14671481
[12]  CasasGarriga C. Summarizing Sequential Data with Closed Partial Orders // Proc of the SIAM International Conference on Data Mining. Newport Beach, USA, 2005: 380391

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133