全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于HuberM估计的鲁棒Cubature卡尔曼滤波算法

DOI: 10.13195/j.kzyjc.2012.1565, PP. 572-576

Keywords: Cubature,卡尔曼滤波,非线性滤波,Huber,M估计,鲁棒性

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cubature卡尔曼滤波器(CKF)在非高斯噪声或统计特性未知时滤波精度将会下降甚至发散,为此提出了统计回归估计的鲁棒CKF算法.推导出线性化近似回归和直接非线性回归的鲁棒CKF算法,直接非线性回归克服了观测方程线性化近似带来的不足.具有混合高斯噪声的仿真实例比较了3种Cubature卡尔曼滤波器的滤波性能,结果表明这两种鲁棒CKF滤波精度及估计一致性明显优于CKF,直接非线性回归的CKF的鲁棒性更强,滤波性能更好.

References

[1]  Arasaratnam I, Haykin S. Cubature Kalman filters[J]. IEEE Trans on Automatic Control, 2009, 54(6): 1254-1269.
[2]  孙枫, 唐李军. Cubature 卡尔曼滤波与Unscented 卡尔曼滤波估计精度比较[J]. 控制与决策, 2013, 28(2): 303-308.
[3]  (Sun F, Tang L J. Estimation precision comparison of Cubature Kalman filter and Unscented Kalman filter[J]. Control and Decision, 2013, 28(2): 303-308.)
[4]  Kumar Pakki, Bharani Chandra, Da-Wei Gu, et al. Cubature information filter and its applications[C]. 2011 American Control Conf. San Francisco: IEEE, 2011: 3609-3614.
[5]  Ienkaran Arasaratnam, Simon Haykin, Thomas R Hurd. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations[J]. IEEE Trans on Signal Processing, 2010, 58(10): 4977-4993.
[6]  Kumar Pakki, Bharani Chandra, Da-Wei Gu, et al. Cubature Kalman filter based localization and mapping[C]. The 18th IFAC World Congress. Milano: IEEE, 2011: 2121-2125.
[7]  郝燕玲, 杨峻巍, 陈亮, 等. 基于NPF-CKF 的捷联惯导系统动基座初始对准技术[J]. 中国惯性技术学报, 2011, 19(6): 654-658.
[8]  (Hao Y L, Yang J W, Chen L, et al. Initial alignment of SINS on dynamic base based on NPF-CKF[J]. J of Chinese Inertial Technology, 2011, 19(6): 654-658.)
[9]  孙枫, 唐李军. 基于CKF 的SINS 大方位失准角初始对准[J]. 仪器仪表学报, 2012, 33(2): 327-333.
[10]  (Liu J, Cai B G, Tang T, et al. CKF-based robust filtering algorithm for GNSS/INS integrated train positioning[J]. J of Traffic and Trans Engineering, 2010, 10(5): 102-107.)
[11]  常国宾, 许江宁, 常路宾, 等. 一种新的鲁棒非线性卡尔曼滤波[J]. 南京航空航天大学学报, 2011, 43(6): 754-759.
[12]  (Chang G B, Xu J N, Chang L B, et al. New kind of robust nonlinear Kalman filter[J]. J of Nanjing University of Aeronautics Astronautics, 2011, 43(6): 754-759.)
[13]  穆静, 蔡远利. 迭代容积卡尔曼滤波算法及其应用[J]. 系统工程与电子技术, 2011, 33(7): 1454-1457.
[14]  (Mu J, Cai Y L. Iterated cubature Kalman filter and its application[J]. Systems Engineering and Electronics, 2011, 33(7): 1454-1457.)
[15]  (Sun F, Tang L J. Initial alignment of large azimuth misalignment in SINS based on CKF[J]. Chinese J of Scientific Instrument, 2012, 33(2): 327-333.)
[16]  Sun Feng, Tang Lijun. Augmented and Nonaugmented Cubature Kalman filter[J]. J of Information and Computational Science, 2012, 9(2): 437-450.
[17]  郝燕玲, 杨峻巍, 陈亮, 等. 基于SRCKF 的水下航行器动基座初始对准技术[J]. 华中科技大学学报: 自然科学版, 2012, 40(2): 123-127.
[18]  (Hao Y L, Yang J W, Chen L, et al. Initial alignment method of the dynamic base for unerwater vehicles using SRCKF[J]. J of Huazhong University of Science and Technology: Nature Science Edition, 2012, 40(2): 123-127.)
[19]  Li Wenling, Jia Yingmin. Location of mobile station with maneuvers using an IMM-based Cubature Kalman filter[J]. IEEE Trans on Industrial Electronics, 2012, 59(11): 4338-4348.
[20]  Martin Havlicek, Karl J Friston, Jiri Jan, et al. Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering[J]. Neuroimage, 2011, 56(4): 2109-2128.
[21]  刘江, 蔡伯根, 唐涛, 等. 基于CKF 的GNSS/INS 列车组合定位鲁棒滤波算法[J]. 交通运输工程学报, 2010, 10(5): 102-107.
[22]  Huber P J. Robust estimation of a location parameter[J]. Annals of Mathematical Statistics, 1964, 35(2): 73-101.
[23]  Karlgaard C D, Schaub H. Huber-based divided difference filtering[J]. J of Guidance, Control and Dynamics, 2007, 30(3): 885-891.
[24]  Wang X, Cui N, Guo J. Huber-based unscented filtering and its application to vision-based relative navigation[J]. IET Radar Sonar Navigation, 2010, 4(1): 134-141.
[25]  Lefebvre T, Bruyninckx H, de Schutter J. Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators”[J]. IEEE Trans on Automatic Control, 2002, 47(8): 1406-1409.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133