All Title Author
Keywords Abstract


一种新型CO2跨临界动力循环理论研究

, PP. 1182-1185

Keywords: CO2,跨临界动力循环,循环性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

CO2环境性质优秀,是较为理想的动力循环工质。针对常规CO2跨临界动力循环冷凝器中工质难以被常规冷却水冷凝的问题,提出一种新型CO2跨临界动力循环,并采用理论分析方法,研究了此循环的循环性能。结果表明,系统内部正循环质量流量保持不变,系统内部逆循环质量流量随冷却终温的升高而升高;循环净输出功率和循环热效率随冷却终温的升高而缓慢降低,随冷却压力的升高而降低;当冷却压力为7.5MPa,冷却终温为30.5摄氏度时,净输出功率为258.8kW,循环热效率为0.067。

References

[1]  Guo T, Wang H X, Zhang S J. Comparative Analysis of CO2-Based Transcritical Rankine Cycle and HFC245fa-Based Subcritical Organic Rankine Cycle (ORC) Using Low-Temperature Geothermal Source [J]. Science in China Series E: Technological Sciences, 2010, 53(6): 1869--1900
[2]  Chen H, Goswami D Y, Rahman M M, et al. Energetic and Exergetic Analysis of CO2-and R32-Based Transcritical Rankine Cycles for Low-Grade Heat Conversion [J]. Applied Energy, 2011,88(8): 2802--2808
[3]  Garg P, Kumar P, Srinivasan K, et al. Evaluation of Carbon Dioxide Blends with Isopentane and Propane As Working Fluids for Organic Rankine Cycles [J]. Applied Thermal
[4]  Engineering, 2013, 52(2): 439--448
[5]  Zhang X R, Yamaguchi H, Uneno D. Experimental Study on the Performance of Solar Rankine System Using Supercritical CO2 [J]. Renewable Energy, 2007, 32(15): 2617--2628
[6]  Yamaguchi H, Zhang X R, Fujima K, et al. Solar Energy Powered Rankine Cycle Using Supercritical CO2 [J]. Applied Thermal Engineering, 2006, 26(17/18): 2345--2354
[7]  Kim Y M, Kim C G, Favrat D. Transcritical or Supercritical CO2 Cycles Using Both Low-and High-Temperature Heat Sources [J]. Energy, 2012, 43(1): 402--415
[8]  Batet L, Alvarez-Fernandez J M, Mas de les Valls E, et al. Modeling of a Supercritical CO2 Power Cycle for Nuclear Fusion Reactors Using RELAP5-3D [J]. Fusion Engineering and Design, 2014, 89(4): 354--359
[9]  Garg P, Srinivasan K, Dutta P. Comparision of CO2 and Steam in Transcritical Rankine Cycles for Concentrated Solar Power [J]. Energy Procedia, 2014, 49: 1138--1146
[10]  Iverson B D, Conboy T M, Pasch J J. Supercitical CO2 Brayton Cycles for Solar-Thermal Energy [J]. Applied Energy, 2013,111(11): 957--970
[11]  Halimi B, Suh K Y. Computational Analysis of Supercritical CO2 Bragyton Cycle Power Conversion System for Fusion Reactor [J]. Energy Conversion and Management, 2012,
[12]  (11): 38--43
[13]  Calm J M, Hourahan G C. Refrigerant Data Summary [J]. Engineered Systems, 2001, 18(11): 74--88
[14]  Lemmon E W, Huber M L, McLinden M O. NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0 [R]. National Institute of Standards and Technology, 2010

Full-Text

comments powered by Disqus