All Title Author
Keywords Abstract


(Fe0.03Ni0.97)8(Si0.79P0.21)3的等温状态方程研究

DOI: 10.11858/gywlxb.2011.03.013, PP. 275-281

Keywords: 陨硅镍铁石,高压,状态方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用固态高温烧结反应方法,成功合成出了陨硅镍铁石样品(Fe0.03Ni0.97)8(Si0.79P0.21)3。X射线衍射结果表明,合成样品的结构为R3'c,对应的晶胞参数为a=b=0.6638(1)nm,c=3.7892(2)nm,V=1.44615(6)nm3。在室温下,对样品进行原位高压X射线衍射研究,实验最高压力达到21.3GPa,随着压力的升高,晶胞体积逐渐减小,但并没有观察到结构相变。利用Birch-Murnaghan状态方程对体积与压力的关系进行拟合,获得常温常压下的体积V0=1.4414(24)nm3,体积模量K0=220(7)GPa。晶轴与压力的关系利用Murnaghan状态方程拟合,获得a轴和c轴的模量分别为Ka=257(9)和Kc=165(4),c轴较a轴容易压缩。

References

[1]  Birch F. Elasticity and Constitution of the Earth Interior [J]. J Geophys Res, 1952, 57: 227-286.
[2]  Poirier J P. Light Elements in the Earths Outer Core: A Critical Review [J]. Phys Earth Planet Inter, 1994, 85: 319-337.
[3]  Dziewonski A M, Anderson D L. Preliminary Reference Earth Model [J]. Phys Earth Planet Int, 1981, 25: 297-356.
[4]  McDonough W F, Sun S S. The Composition of the Earth [J]. Chemical Geology, 1995, 120: 223- 253.
[5]  Hemley R J, Mao H K. In Situ Studies of Iron under Pressure: New Windows on the Earth's Core [J]. Int Geol Rev, 2001, 43: 1- 30.
[6]  Fiquet G, Badro J, Gregoryanz E, et al. Sound Velocity in Iron Carbide (Fe3C) at High Pressure: Implications for the Carbon Content of the Earth's Inner Core [J]. Physics of the Earth and Planetary Interiors, 2009, 172: 125-129.
[7]  Lord O T, Walter M J, Dasgupat R, et al. Melting in the Fe-C System to 70 GPa [J]. Earth and Planetary Science Letters, 2009, 284: 157-167.
[8]  Kuwayama Y, Sawai T, Hirose K, et al. Phase Relations of Iron-Silicon Alloys at High Pressure and High Temperature [J]. Phys Chem Minerals, 2009, 36: 511-518.
[9]  Lin J F, Struzhkin V V, Sturhahn W, et al. Sound Velocities of Iron-Nickel and Iron-Silicon Alloys at High Pressures [J]. Geophysical Research Letters, 2003, 30: 2112
[10]  Fei Y W, Li J, Bertka C M, et al. Structure Type and Bulk Modulus of Fe3S, a New Iron-Sulfur Compound [J]. American Mineralogist, 2000, 85: 1830-1833.
[11]  Morard G, Andrault D, Guignot N, et al. In Situ Determination of Fe-Fe3S Phase Diagram and Liquid Structural Properties up to 65 GPa [J]. Earth and Planetary Science Letters, 2008, 272: 620-626.
[12]  Scott H P, Kiefer B, Martin C D, et al. p-V Equation of State for Fe2P and Pressure-Induced Phase Transition in Fe3P [J]. High Pressure Research, 2008, 28: 375-384.
[13]  Wu X, Kanzaki M, Qin S, et al. Structural Study of FeP2 at High Pressure [J]. High Pressure Research, 2009, 29: 235-244.
[14]  Takafuji N, Hirose K, Mitome M, et al. Solubilities of O and Si in Liquid Iron in Equilibrium with (Mg, Fe)SiO3 Perovskite and the Light Elements in the Core [J]. Geophys Res Lett, 2005, 32: L06313.
[15]  Sakai T, Kondo T, Ohtani E, et al. Interaction between Iron and Post-Perovskite at Core-Mantle Boundary and Core Signature in Plume Source Region [J]. Geophys Res Lett, 2006, 33: L15317.
[16]  Ozawa H, Hirose K, Mitome M, et al. Chemical Equilibrium between Ferropericlase and Molten Iron to 134 GPa and Implications for Iron Content at the Bottom of the Mantle [J]. Geophys Res Lett, 2008, 35: L05308.
[17]  Ozawa H, Hirose K, Mitome M, et al. Experimental Study of Reaction between Perovskite and Molten Iron to 146 GPa and Implications for Chemically-Distinct Buoyant Layer at the Top of the Core [J]. Phys Chem Miner, 2009, 36: 355-363
[18]  Georg R B, Halliday A N, Schauble E A, et al. Silicon in the Earth's Core [J]. Nature, 2007, 447: 1102-1106.
[19]  McDonough W F. Compositional Model for the Earth's Core [J]. Treatise on Geochemistry, 2004, 120: 223-253.
[20]  Scott H P, Huggins S, Frank M R, et al. Equation of State and High-Pressure Stability of Fe3P-Schreibersite: Implications for Phosphorus Storage in Planetary Cores [J]. Geophysical Research Letters, 2007, 34: L06302.
[21]  Steveson D J. Models of the Earth's Core [J]. Science, 1981, 214: 611-619.
[22]  Okada A, Kobayashi K. Structure of Synthetic Perryite, (Ni, Fe)8(Si, P)3 [J]. Acta Cryst, 1991, C47: 1358-1361.
[23]  Richard E M. The Centrosymmetric-Noncentrosymmetric Ambiguity: Some More Examples [J]. Acta Cryst, 1994, A50: 450-455.
[24]  Mao H K, Xu J, Bell P. Calibration of the Ruby Pressure Gauge to 800 kbar under Quasi-Hydrostatic Conditions [J]. J Geophys Res, 1986, 91: 4673-4676.
[25]  Takahashi T, Bassett W A, Mao H K. Isothermal Compression of the Alloys of Iron up to 300 kbar at Room Temperature: Iron-Nickel Alloys [J]. J Geophys Res, 1968, 73: 4717-4725.
[26]  Knittle E, Williams Q. Static Compression of ε-FeSi and an Evaluation of Reduced Silicon as a Deep Earth Constituent [J]. Geophys Res Lett, 1995, 22: 445-448.
[27]  David P D, Wilson A C, Pierre B. The Equation of State of CsCl-Structured FeSi to 40 GPa: Implications for Silicon in the Earth's Core [J]. Geophysical Research Letters, 2003, 30: 1014
[28]  Li J, Mao H K, Fei Y, et al. Compression of Fe3C to 30 GPa at Room Temperature [J]. Phys Chem Minerals, 2002, 29: 166-169.
[29]  Seagle C T, Campbell A J, Heinz D L, et al. Thermal Equation of State of Fe3S and Implications for Sulfur in Earth's Core [J]. J Geophys Res, 2006, 111: B06209: 1-7.
[30]  Dera P, Lavina B, Borkowski L A, et al. Structure and Behavior of the Barringerite Ni End-Member, Ni2P, at Deep Earth Conditions and Implications for Natural Fe-Niphosphides in Planetary Cores [J]. J Geophys Res, 2009, 114: B03201
[31]  Dewaele A, Loubeyre P, Occeli F, et al. Quasihydrostatic Equation of State of Iron above 2 Mbar [J]. Phys Rev Lett, 97: 215504.
[32]  Chen B, Penwell D, Kruger M B. The Compressibility of Nanocrystalline Nickel [J]. Solid State Commun, 2000, 115: 191- 194.

Full-Text

comments powered by Disqus