All Title Author
Keywords Abstract

工程力学  2013 

柔性扑翼气动性能的数值研究

DOI: 10.6052/j.issn.1000-4750.2012.01.0028, PP. 13-18

Keywords: 柔性变形,气动性能,前缘涡,推进效率,尾迹捕捉机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

国内外对扑翼飞行的气动特性进行了大量研究,这些研究大多基于简谐扑动的刚性翼,然而大量观察发现鸟或昆虫飞行时,翅膀存在明显的柔性变形,这种变形对其气动性能具有显著的影响。该文针对一简化的二维柔性扑翼模型,采用数值求解N-S方程并耦合扑翼柔性变形方程的计算方法,研究了扑翼柔性变形对其气动性能的影响。结果显示扑翼的柔性变形改变了扑翼周围的涡结构,从而影响扑翼的气动性能;适当的柔性变形能延迟前缘涡的脱落,从而有效地改善扑翼的推进效率,但同时减弱了扑翼在低雷诺数环境中产生高升力的尾迹捕捉机制。

References

[1]  Mueller T JFixed and flapping wing dynamics for MAV applications [C]. AIAA Progress in Astron and Aeron, Massachusetts: AIAA Press, 2001:195.
[2]  Wootton R J. Support and deformability in insect wings [J]. Journal of Zoology, London, 1981, 193:447―468.
[3]  Combes S A, Daniel T L. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta [J]. The Journal of Experimental Biology, 2003,206:2999―3006.
[4]  Hamamoto M, Ohta Y, Hara K, Hisada T. Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings [J]. Advanced Robotics, 2007,21:1―21.
[5]  Zhao L, Huang Q F, Deng X Y, Sane S. The effect of chord-wise flexibility on the aerodynamic force generation of flapping wings: Experimental studies [C]. IEEE International Conference on Robotics and Automation, 2009:4207―4212.
[6]  Aono H,Chimakurthi S K,Wu P,S?llstr?m E,Stanford B K,Carlos E S,Ifju P,Ukeiley L,Shyy WA computational and experimental study of flexible flapping wing aerodynamics [C]. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Massachusetts: AIAA Press, 2010: 1―22.
[7]  (曾锐),(昂海松),(梅源),(季健). 扑翼柔性对其气动性能的影响[J]. (计算力学学报), 2005,22(6):750―754. Zeng Rui, Ang Haisong, Mei Yuan, Ji Jian. Flexibility of flapping wing and its effect on aerodynamic characteristic [J]. Chinese Journal of Computational Mechanics,2005,22(6): 750―754. (in Chinese)
[8]  Miao J M, Ho M H. Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil [J]. Journal of Fluids and Structures, 2006,22:401―419.
[9]  Jongerius S R, Lentink D. Structural analysis of a dragonfly wing [J]. Experimental Mechanics, 2010,50:1323―1334.
[10]  Wall W A, Ramm E. Fluid-structure interaction based upon a stabilized (ALE) finite element method [J]. Computational Mechanics New Trends and Applications, 1998,16:1―20.
[11]  Walhorn E, Hübner B, Dinkler D. Space-time finite elements for fluid-structure interaction [J]. Proceedings in Applied Mathematics and Mechanics (PAMM), 2002,1(1):81―82.
[12]  Hübner B, Walhorn E, Dinkler D. A monolithic approach to fluid-structure interaction using space-time finite elements [J]. Computer Methods in Applied Mechanics and Engineering, 2004,193:2087―2104.
[13]  Young J. Numerical simulation of the unsteady aerodynamics of flapping airfoils [D]. Randwick: University of New South Wales Australian Defence Force Academy, 2005:104.
[14]  Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight [J]. Science, 1999,284:954―960.

Full-Text

comments powered by Disqus