All Title Author
Keywords Abstract

工程力学  2015 

体育场馆建筑群风荷载相互干扰效应数值模拟研究

DOI: 10.6052/j.issn.1000-4750.2014.05.S042, PP. 289-293

Keywords: 大跨度体育馆屋盖,风荷载分布,数值模拟,干扰因素,干扰因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

大跨度体育中心屋盖多为复杂曲面,且由多个场馆建筑组成,作用于场馆群屋盖的风荷载相互干扰效应在荷载规范中没有明确给出要求,风荷载的确定需要借助风洞试验或CFD等手段的帮助,鉴于此,应用数值模拟方法,基于FLUENT平台采用剪切应力运输k-ω模型(简称SSTk-ω模型)对大跨度体育场馆群屋盖风荷载分布和相互干扰效应进行数值模拟。分析了不同干扰因素(包括不同风向角、体育场开口方向及体育场馆之间相对位置)的影响下,体育场对体育馆屋盖结构风荷载的影响,分析其相应的干扰机理。结果表明:不同干扰影响因素的风压系数干扰因子IF值大多数小于1.2,约95%的IF值小于1,处于遮挡区域内;约5%的IF值大于1,处于放大区域内;风向角为270°时,体育场对体育馆的干扰影响最显著;体育场开口较体育场无开口时的体育馆屋盖结构表面风荷载放大干扰现象显著,放大将近1.75倍。当Sx减小时,干扰因子IF值增大,体育馆受体育场放大干扰效应越显著。当Sy增加时,干扰因子IF的最大值在逐渐减小,表明体育馆屋盖结构表面的风压系数在减小。

References

[1]  GB50009-2001, Load code for the design of building structures [S]. Beijing: China Architecture Industry Press, 2001. (in Chinese)
[2]  殷志祥, 徐佳萌. 不同参数影响下球面网壳表面风压系数分布规律研究[J]. 工程力学, 2012, 29(4): 134―141.
[3]  Yin Zhixiang, Xu Jiameng. Study on distributing rules of wind pressure coefficients on spherical shell surface under effects of different parameters [J]. Engineering Mechanics, 2012, 29(4): 134―141. (in Chinese)
[4]  马骏, 周岱, 李华锋, 朱忠义, 董石麟. 大跨度空间结构抗风分析的数值风洞方法[J]. 工程力学, 2007, 24(7): 77―85, 93.
[5]  Ma Jun, Zhou Dai, Li Huafeng, Zhu Zhongyi, Dong Shilin. Numerical wind tunnel technique for the wind resistance analysis of long span spatial structure [J]. Engineering Mechanics, 2007, 24(7): 77―85, 93. (in Chinese)
[6]  卢春玲, 李秋胜, 黄生洪, 等. 大跨度复杂屋盖结构风荷载的大涡模拟[J]. 土木工程学报, 2011, 44(1): 1―7.
[7]  Lu Chunling, Li Qiusheng, Huang Shenghong, et al. Simulation of large eddy of wind load on a long-span complex roof structure [J]. China Civil Engineering Journal, 2011, 44(1): 1―7. (in Chinese)
[8]  陆锋. 大跨度平屋面结构的风振响应和风振系数研究[D]. 杭州: 浙江大学, 2001.
[9]  Lu Feng. Study on wind-induced dynamic response and wind load factor for long-span flat roof structures [D]. Hangzhou: Zhejiang University, 2001. (in Chinese)
[10]  孙晓颖, 沈世钊. 大跨度平屋面绕流的数值模拟[C]. 三亚: 第十一届全国结构风工程学术会议论文集, 2003: 897―903.
[11]  Sun Xiaoying, Shen Shizhao. The numerical simulation of flow around a long-span flat roof [C]. SanYa: Proceedings of the 11th National Conference on Structural Wind Engineering, 2003: 897―903. (in Chinese)
[12]  Jin Xinyang, Cheng Dailin, Yang Wei, et al. Comparison of turbulence models on the prediction of flow field around a cube based on RANS [C]// Seoul, Korea: Proceeding of The Sixth Asia Pacific Conference on Wind Engineering (APCWEVI), 2005: 881―884.
[13]  Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32(8): 187―197.
[14]  殷志祥, 徐佳萌. 大跨度组合网壳在台风作用下的风振响应分析[J]. 建筑结构学报, 2010, (增刊2): 142―146.
[15]  Yin Zhixiang, Xu Jiameng. Wind vibration response analysis of large-span composite reticulated shell under typhoon [J]. Journal of Building Structures, 2010, (Suppl 2): 142―146. (in Chinese)
[16]  陈水福, 张学安, 金建明. 体育场主看台悬挑屋盖表面风压的数值模拟[J]. 工程力学, 2007, 24(6): 98―103.
[17]  Chen Shuifu, Zhang Xuean, Jin Jianming. Numerical simulation of wind pressures on cantilever grandstand roofs [J]. Engineering Mechanics, 2007, 24(6): 98―103. (in Chinese)
[18]  田浦. 台风风谱的研究[C]. 北京: 中国土木工程学会, 1988: 1021―1029.
[19]  Tian Pu. Research of the typhoon wind spectrum [C]. Beijing: China Civil Engineering Society, 1988: 1021―1029. (in Chinese)
[20]  GB50009-2001, 建筑结构荷载规范[S]. 北京: 中国建筑工业出版社, 2001.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal