全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国土壤微生物学研究十年回顾

DOI: 10.11867/j.issn.1001-8166.2013.10.1087, PP. 1087-1105

Keywords: 土壤生物,土壤过程,土壤微生物,陆地表层系统变化过程与机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

土壤是人类赖以生存与发展的基础,是地球系统大气圈、水圈、岩石圈及生物圈相互作用最复杂、最活跃的交界面。土壤中的微生物数量巨大、种类繁多,是联系不同圈层物质与能量交换的重要纽带,被称为地球关键元素生物地球化学循环过程的引擎,但长期以来理论与技术发展滞后并制约了土壤微生物学研究,阻碍了对土壤过程和地球表层系统关键过程的深入认识。21世纪初,土壤微生物的1分类理论渐具雏形,先进技术的开发应用发展迅猛,成为不同学科交叉发展的重要前沿。国家自然科学基金委员会地球科学部一处紧紧围绕学科发展方向,深入分析了土壤微生物及其相关项目的申请趋势,并于2005年1月组织了国内相关领域同行,主持召开了“土壤生物与土壤过程”学术研讨会,结合国际科学前沿与国家战略需求,明确了当时我国土壤微生物学的主要任务与重点领域,积极引导了我国土壤微生物学的发展方向。过去10年来,在国家自然科学基金委员会地球科学部一处和国家相关部门的大力支持和指导下,我国土壤微生物学研究在土壤养分元素转化、全球环境变化与污染环境修复等方面取得了长足发展,在此对部分成果简要综述,期望能在新形势下,进一步凝练科学共识,把握学科发展前沿,提升理论创新能力,推动我国土壤微生物学的进一步发展。

References

[1]  Jansson J K. FORUM: Microbiology the life beneath our feet[J]. Nature, 2013, 494(7 435): 40-41.
[2]  Waksman S A. Soil Microbiology[M]. New York: John Wiley and Sons, Inc., 1952.
[3]  Falkowski P G, Fenchel T, Delong E F. The microbial engines that drive Earth’s biogeochemical cycles[J]. Science, 2008, 320(5 879): 1 034-1 039.
[4]  Diacono M, Montemurro F. Long-term effects of organic amendments on soil fertility: A review[J]. Agronomy for Sustainable Development, 2010, 30(2): 401-422.
[5]  Nielsen U N, Ayres E, Wall D H, et al. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships[J]. European Journal of Soil Science, 2011, 62(1): 105-116.
[6]  Mager D M, Thomas A D. Extracellular polysaccharides from cyanobacterial soil crusts a review of their role in dryland soil processes[J]. Journal of Arid Environments, 2011, 75(2): 91-97.
[7]  Huang Q Y, Chen W L, Xu L H. Adsorption of copper and cadmium by Cu-and Cd-resistant bacteria and their composites with soil colloids and kaolinite[J]. Geomicrobiology Journal, 2005, 22(5): 227-236.
[8]  Cosentino D, Chenu C, Le Bissonnais Y. Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil[J]. Soil Biology & Biochemistry, 2006, 38(8): 2 053-2 062.
[9]  Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3 435-3 440.
[10]  Zhang H, Zhang J, Zhao B, et al. Removal of bacteriophages MS2 and phiX174 from aqueous solutions using a red soil[J]. Journal of Hazardous Materials, 2010, 180(1/3): 640-647.
[11]  Zhao B, Zhang H, Zhang J, et al. Virus adsorption and inactivation in soil as influenced by autochthonous microorganisms and water content[J]. Soil Biology & Biochemistry, 2008, 40(3): 649-659.
[12]  Yao Z Y, Wei G, Wang H Z, et al. Survival of escherichia coli O157∶ [KG-*2]H7 in soils from vegetable fields with different cultivation patterns[J]. Applied and Environmental Microbiology, 2013, 79(5): 1 755-1 756.
[13]  Treusch A H, Leininger S, Kletzin A, et al. Novel genes for nitrite reductase and amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J]. Environmental Microbiology, 2005, 7(12): 1 985-1 995.
[14]  Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006, 442(7 104): 806-809.
[15]  Zhang L M, Offre P R, He J Z, et al. Autotrophic ammonia oxidation by soil thaumarchaea[J]. Proceedings of the National Academy of Sciences, 2010, 107(40): 17 240-17 245.
[16]  Pester M, Schleper C, Wagner M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology[J]. Current Opinion in Microbiology, 2011, 14(3): 300-306.
[17]  Prakash O, Jangid K, Shouche Y. Carl Woese: From biophysics to evolutionary microbiology[J]. Indian Journal of Microbiology, 2013, 53(3): 247-252.
[18]  Wu Jinshui, Lin Qimei, Huang Qiaoyun, et al. Determination Method and Application of Soil Microbial Biomass[M]. Beijing: China Meteorological Press, 2006.[吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京:气象出版社, 2006.]
[19]  O’donnell A G, Young I M, Rushton S P, et al. Visualization, modelling and prediction in soil microbiology[J]. Nature Reviews Microbiology, 2007, 5(9): 689-699.
[20]  Feng Y Z, Lin X G, Zhu J G, et al. A phototrophy-driven microbial food web in a rice soil[J]. Journal of Soils and Sediments, 2011, 11(2): 301-311.
[21]  Crotty F V, Adl S M, Blackshaw R P, et al. Using stable isotopes to differentiate trophic feeding channels within soil food webs[J]. Journal of Eukaryotic Microbiology, 2012, 59(6): 520-526.
[22]  Feng Y Z, Lin X G, Jia Z J, et al. Identification of formate-metabolizing bacteria in paddy soil by DNA—Based stable isotope probing[J]. Soil Sciience of Society of America Journal, 2012, 76(1): 121-129.[FL)]
[23]  Griffiths B S, Qin L, Huili W, et al. Restoration of soil physical and biological stability are not coupled in response to plants and earthworms[J]. Ecological Restoration, 2008, 26(2): 102-104.
[24]  Lin Q M, Zhao X R, Zhao Z J, et al. Rock phosphate solubilization mechanisms of one fungus and one bacterium[J]. Agricultural Sciences in China, 2002, 1(9): 1 023-1 028.
[25]  Wu J, Huang M, Xiao H A, et al. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments[J]. Plant and Soil, 2007, 290(1/2): 333-342.
[26]  IPCC. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC[M]. Cambridge:Cambridge University Press, 2007.
[27]  Mahecha M D, Reichstein M, Carvalhais N, et al. Global convergence in the temperature sensitivity of respiration at ecosystem level[J]. Science, 2010, 329(5 993): 838-840.
[28]  Conrad R. The global methane cycle: Recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5): 285-292.
[29]  Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison[J]. Journal of Climate, 2006, 19(14): 3 337-3 353.
[30]  Patt T E, Cole G C, Bland J, et al. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy[J]. Journal of Bacteriology, 1974, 120(2): 955-964.
[31]  Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil[J]. Environmental Pollution, 2005, 133(1): 71-84.
[32]  Horvath R S. Microbial co-metabolism and the degradation of organic compounds in nature[J]. Bacteriological Reviews, 1972, 36(2): 146-155.
[33]  Parks J M, Johs A, Podar M, et al. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6 125): 1 332-1 335.
[34]  Tang G, Watson D B, Wu W M, et al. U(VI) bioreduction with emulsified vegetable oil as the electron donor-model application to a field test[J]. Environmental Science & Technology, 2013, 47(7): 3 218-3 225.
[35]  He J Z, Shen J P, Zhang L M, et al. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices[J]. Environmental Microbiology, 2007, 9(9): 2 364-2 374.
[36]  Chen Z, Luo X, Hu R, et al. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J]. Microbial Ecology, 2010, 60(4): 850-861.
[37]  Liu J, Hou H, Sheng R, et al. Denitrifying communities differentially respond to flooding drying cycles in paddy soils[J]. Applied Soil Ecology, 2012, 62:155-162.
[38]  Zhu G, Wang S, Wang Y, et al. Anaerobic ammonia oxidation in a fertilized paddy soil[J]. The ISME Journal, 2011, 5(12): 1 905-1 912.
[39]  Zhu G, Wang S, Wang W, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces[J]. Nature Geoscience, 2013, 6(2): 103-107.
[40]  Ying J Y, Zhang L M, He J Z. Putative ammonia-oxidizing bacteria and archaea in an acidic red soil with different land utilization patterns[J]. Environmental Microbiology Reports, 2010, 2(2): 304-312.
[41]  Shen J P, Zhang L M, Zhu Y G, et al. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam[J]. Environmental Microbiology, 2008, 10(6): 1 601-1 611.
[42]  Hu H W, Zhang L M, Dai Y, et al. pH-dependent distribution of soil ammonia oxidizers across a large geographical scale as revealed by high-throughput pyrosequencing[J]. Journal of Soils and Sediments, 2013, 13(8): 1 439-1 449.
[43]  Zhang L M, Offre P R, He J Z, et al. Autotrophic ammonia oxidation by soil thaumarchaea[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17240-17245.
[44]  Zhang L M, Hu H W, Shen J P, et al. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J]. The ISME Journal, 2012, 6(5): 1 032-1 045.
[45]  Lu L, Han W, Zhang J, et al. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea[J]. The ISME Journal, 2012, 6(10): 1 978-1 984.
[46]  Lu L, Jia Z J. Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils[J]. Environmental Microbiology, 2013, 15(6): 1 795-1 809.
[47]  Di H J, Cameron K, Shen J P, et al. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009, 2(9): 621-624.
[48]  Xia W W, Zhang C X, Zeng X W, et al. Autotrophic growth of nitrifying community in an agricultural soil[J]. The ISME Journal, 2011, 5(7): 1 226-1 236.
[49]  He J Z, Hu H W, Zhang L M. Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology & Biochemistry, 2012, 55: 146-154.
[50]  Kuypers M M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J]. Nature, 2003, 422(6 932): 608-611.
[51]  Dalsgaard T, Canfield D E, Petersen J, et al. N-2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica[J]. Nature, 2003, 422(6 932): 606-608.
[52]  Peng J J, Lue Z, Rui J P, et al. Dynamics of the methanogenic archaeal community during plant residue decomposition in an anoxic rice field soil[J]. Applied and Environmental Microbiology, 2008, 74(9): 2 894-2 901.
[53]  Rui J P, Peng J J, Lu Y H. Succession of bacterial populations during plant residue decomposition in rice field soil[J]. Applied and Environmental Microbiology, 2009, 75(14): 4 879-4 886.
[54]  Rui J P, Peng J J, Lu Y H. Succession of bacterial populations during plant residue decomposition in rice field soil[J]. Applied and Environmental Microbiology, 2009, 75(14): 4 879-4 886.
[55]  Liu P F, Qiu Q F, Lu Y H. Syntrophomonadaceae-affiliated species as active butyrate-utilizing syntrophs in paddy field soil[J]. Applied and Environmental Microbiology, 2011, 77(11): 3 884-3 887.
[56]  Rui J P, Qiu Q F, Lu Y H. Syntrophic acetate oxidation under thermophilic methanogenic condition in Chinese paddy field soil[J]. FEMS Microbiology Ecology, 2011, 77(2): 264-273.
[57]  Gan Y L, Qiu Q F, Liu P F, et al. Syntrophic oxidation of propionate in rice field soil at 15 and 30 degrees C under methanogenic conditions[J]. Applied and Environmental Microbiology, 2012, 78(14): 4 923-4 932.
[58]  Yuan Q, Lu Y H. Response of methanogenic archaeal community to nitrate addition in rice field soil[J]. Environmental Microbiology Reports, 2009, 1(5): 362-369.
[59]  Yuan Y L, Conrad R, Lu Y H. Responses of methanogenic archaeal community to oxygen exposure in rice field soil[J]. Environmental Microbiology Reports, 2009, 1(5): 347-354.
[60]  Yuan Y L, Conrad R, Lu Y H. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil[J]. Environmental Microbiology Reports, 2011, 3(3): 320-328.
[61]  Qiu Q F, Noll M, Abraham W R, et al. Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ[J]. The ISME Journal, 2008, 2(6): 602-614.
[62]  Qiu Q F, Conrad R, Lu Y H. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia[J]. Environmental Microbiology Reports, 2009, 1(5): 355-361.
[63]  Ma K, Qiu Q F, Lu Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16(11): 3 085-3 095.
[64]  Ma K, Lu Y H. Regulation of microbial methane production and oxidation by intermittent drainage in rice field soil[J]. FEMS Microbiology Ecology, 2011, 75(3): 446-456.
[65]  Ma K, Conrad R, Lu Y H. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil[J]. Applied and Environmental Microbiology, 2012, 78(2): 445-454.
[66]  Lu Z, Lu Y H. Methanocella conradii sp nov., a thermophilic, obligate hydrogenotrophic methanogen, isolated from Chinese rice field soil[J]. PLoS One, 2012, 7(4): e35279.
[67]  Lu Z, Lu Y H. Complete genome sequence of a thermophilic methanogen, methanocella conradii HZ254, isolated from Chinese rice field soil[J]. Journal of Bacteriology, 2012, 194(9): 2 398-2 399.
[68]  Wu J S, Joergensen R G, Pommerening B, et al. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure[J]. Soil Biology & Biochemistry, 1990, 22(8): 1 167-1 169.
[69]  Joergensen R G, Wu J S, Brookes P C. Measuring soil microbial biomass using an automated procedure[J]. Soil Biology & Biochemistry, 2011, 43(5): 873-876.
[70]  Wu J S, Brookes P C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology & Biochemistry, 2005, 37(3): 507-515.
[71]  He H, Zhang W, Zhang X, et al. Temporal responses of soil microorganisms to substrate addition as indicated by amino sugar differentiation[J]. Soil Biology & Biochemistry, 2011, 43(6): 1 155-1 161.
[72]  Ding L, Wu J, Xiao H, et al. Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 073-1 079.
[73]  Zhang X D, Ang J, Xie H T, et al. Comparison of organic compounds in the particle-size fractions of earthworm casts and surrounding soil in humid Laos[J]. Applied Soil Ecology, 2003, 23(2): 147-153.
[74]  Li Y, Wu J, Liu S, et al. Is the C∶ [KG-*2]N∶ [KG-*2]P stoichiometry in soil and soil microbial biomass related to the landscape and land use in southern subtropical China?[J]. Global Biogeochemical Cycles, 2012, 26: GB4002.
[75]  Pan G, Smith P, Pan W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China[J]. Agriculture Ecosystems & Environment, 2009, 129(1/3): 344-348.
[76]  Zhang W J, Wang X J, Xu M G, et al. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China[J]. Biogeosciences, 2010, 7(2): 409-425.
[77]  Wu J. Carbon accumulation in paddy ecosystems in subtropical China: Evidence from landscape studies[J]. European Journal of Soil Science, 2011, 62(1): 29-34.
[78]  Ge T, Yuan H, Zhu H, et al. Biological carbon assimilation and dynamics in a flooded rice-soil system[J]. Soil Biology & Biochemistry, 2012, 48:39-46.
[79]  Wu J, Zhou P, Li L, et al. Restricted mineralization of fresh organic materials incorporated into a subtropical paddy soil[J]. Journal of the Science of Food and Agriculture, 2012, 92(5): 1 031-1 037.
[80]  Yuan H, Ge T, Wu X, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 2012, 95(4): 1 061-1 071.
[81]  Ge T, Wu X, Chen X, et al. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013, 113:70-78.
[82]  Huang Y, Sun W. Changes in topsoil organic carbon of croplands in mainland China over the last two decades[J]. Chinese Science Bulletin, 2006, 51(15): 1 785-1 803.
[83]  Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China’s cropland[J]. Global Change Biology, 2009, 15(2): 281-305.
[84]  Pan G, Xu X, Smith P, et al. An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring[J]. Agriculture Ecosystems & Environment, 2010, 136(1/2): 133-138.
[85]  Yan X, Cai Z, Wang S, et al. Direct measurement of soil organic carbon content change in the croplands of China[J]. Global Change Biology, 2011, 17(3): 1 487-1 496.
[86]  Zhou P, Song G, Pan G, et al. Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystern experiments from South China[J]. Geoderma, 2009, 153(1/2): 52-60.
[87]  Zhou P, Pan G X, Spaccini R, et al. Molecular changes in Particulate Organic Matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments[J]. European Journal of Soil Science, 2010, 61(2): 231-242.
[88]  Hiltner L. über neuere erfahrungen und probleme auf dem gebiete der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache[J]. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98:59-78.
[89]  Morgan J A, Bending G D, White P J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany, 2005, 56(417): 1 729-1 739.
[90]  Berendsen R L, Pieterse C M J, Bakker P. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486.
[91]  Chaparro J M, Sheflin A M, Manter D K, et al. Manipulating the soil microbiome to increase soil health and plant fertility[J]. Biology and Fertility of Soils, 2012, 48(5): 489-499.
[92]  Morrissey J P, Dow J M, Mark G L, et al. Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture[J]. EMBO Reports, 2004, 5(10): 922-926.
[93]  Zamioudis C, Pieterse C M J. Modulation of host immunity by beneficial microbes[J]. Molecular Plant-Microbe Interactions, 2012, 25(2): 139-150.
[94]  Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interations with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266.
[95]  Xu Z H, Shao J H, Li B, et al. Contribution of bacillomycin D in bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Applied and Environmental Microbiology, 2013, 79(3): 808-815.
[96]  Weng J, Wang Y, Li J, et al. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption[J]. Applied Microbiology and Biotechnology, 2013, 97(19):8 823-8 830.
[97]  Ling N, Raza W, Ma J H, et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology, 2011, 47(6): 374-379.
[98]  Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488(7 409): 91-95.
[99]  Lundberg D S, Lebeis S L, Paredes S H, et al. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7 409): 86-90.
[100]  Mendes R, Kruijt M, De Bruijn I, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria[J]. Science, 2011, 332(6 033): 1 097-1 100.
[101]  Lang J J, Hu J, Ran W, et al. Control of cotton verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer[J]. Biology and Fertility of Soils, 2012, 48(2): 191-203.
[102]  Luo J, Ran W, Hu J A, et al. Application of bio-organic fertilizer significantly affected fungal diversity of soils[J]. Soil Science Society of America Journal, 2010, 74(6): 2 039-2 048.
[103]  Qiu M H, Zhang R F, Xue C, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48(7): 807-816.
[104]  Rong Xingmin, Huang Qiaoyun, Chen Wenli, et al. Surface thermodynamical analysis of adsorption of bacteria on two soilclay minerals[J]. Acta Pedologica Sinica, 2011, 48(2):331-337.[荣兴民, 黄巧云, 陈雯莉, 等. 细菌在两种土壤矿物表面吸附的热力学分析[J]. 土壤学报, 2011, 48(2): 331-337.]
[105]  Hong Z, Rong X, Cai P, et al. Initial adhesion of Bacillus subtilis on soil minerals as related to their surface properties[J]. European Journal of Soil Science, 2012, 63(4): 457-466.
[106]  Cao Y, Wei X, Cai P, et al. Preferential adsorption of extracellular polymeric substances from bacteria on clay minerals and iron oxide[J]. Colloids and Surfaces B: Biointerfaces, 2011, 83(1): 122-127.
[107]  Fang L, Cao Y, Huang Q, et al. Reactions between bacterial exopolymers and goethite: A combined macroscopic and spectroscopic investigation[J]. Water Research, 2012, 46(17): 5 613-5 620.
[108]  Jiang D, Huang Q, Cai P, et al. Adsorption of Pseudomonas putida on clay minerals and iron oxide[J]. Colloids and Surfaces B: Biointerfaces, 2007, 54(2): 217-221.
[109]  Rong X, Huang Q, He X, et al. Interaction of Pseudomonas putida with kaolinite and montmorillonite: A combination study by equilibrium adsorption, ITC, SEM and FTIR[J]. Colloids and Surfaces B: Biointerfaces, 2008, 64(1): 49-55.
[110]  Wu H, Jiang D, Cai P, et al. Adsorption of Pseudomonas putida on soil particle size fractions: Effects of solution chemistry and organic matter[J]. Journal of Soils and Sediments, 2012, 12(2): 143-149.
[111]  Wu H, Jiang D, Cai P, et al. Effects of low-molecular-weight organic ligands and phosphate on adsorption of Pseudomonas putida by clay minerals and iron oxide[J]. Colloids and Surfaces B: Biointerfaces, 2011, 82(1): 147-151.
[112]  Wu Huayong, Jiang Daihua, Cai Peng, et al. Effects of low-molecular-weight organic ligands on adsorption of Bacillus Thuringiensis by clay minerals[J]. Acta Pedologica Sinica, 2011, 48(6):1 293-1 297.[吴华勇, 蒋代华, 蔡鹏, 等.低分子量有机配体对黏粒矿物吸附苏云金芽孢杆菌的影响[J]. 土壤学报, 2011, 48(6): 1 293-1 297.]
[113]  Hong Z, Rong X, Cai P, et al. Effects of temperature, pH and salt concentrations on the adsorption of bacillus subtilis on soil clay minerals investigated by microcalorimetry[J]. Geomicrobiology Journal, 2011, 28(8): 686-691.
[114]  Rong X, Huang Q, Chen W. Microcalorimetric investigation on the metabolic activity of bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite[J]. Applied Clay Science, 2007, 38(1/2): 97-103.
[115]  Cai P, Huang Q, Walker S L. Deposition and survival of escherichia coli O157∶ [KG-*2]H7 on clay minerals in a parallel plate flow system[J]. Environmental Science & Technology, 2013, 47(4): 1 896-1 903.
[116]  Chen H, He X, Rong X, et al. Adsorption and biodegradation of carbaryl on montmorillonite, kaolinite and goethite[J]. Applied Clay Science, 2009, 46(1): 102-108.
[117]  Fang L, Cai P, Li P, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by P. putida and B. thuringiensis and their composites with minerals[J]. Journal of Hazardous Materials, 2010, 181(1/3): 1 031-1 038.
[118]  Fang L, Huang Q, Wei X, et al. Microcalorimetric and potentiometric titration studies on the adsorption of copper by Extracellular Polymeric Substances (EPS), minerals and their composites[J]. Bioresource Technology, 2010, 101(15): 5 774-5 779.
[119]  Feng X, Li P, Qiu G, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science & Technology, 2008, 42(1): 326-332.
[120]  Ye J, Rensing C, Rosen B P, et al. Arsenic biomethylation by photosynthetic organisms[J]. Trends in Plant Science, 2012, 17(3): 155-162.
[121]  Yin X X, Chen J, Qin J, et al. Biotransformation and volatilization of arsenic by three photosynthetic Cyanobacteria[J]. Plant Physiology, 2011, 156(3): 1 631-1 638.
[122]  Jia Y, Huang H, Zhong M, et al. Microbial arsenic methylation in soil and rice rhizosphere[J]. Environmental Science & Technology, 2013, 47(7): 3 141-3 148.
[123]  Huang H, Jia Y, Sun G X, et al. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters[J]. Environmental Science & Technology, 2012, 46(4): 2 163-2 168.
[124]  Jia Y, Huang H, Sun G X, et al. Pathways and relative contributions to arsenic volatilization from rice plants and paddy doil[J]. Environmental Science & Technology, 2012, 46(15): 8 090-8 096.
[125]  Jia Y, Sun G X, Huang H, et al. Biogas slurry application elevated arsenic accumulation in rice plant through increased arsenic release and methylation in paddy soil[J]. Plant and Soil, 2013, 365(1/2): 387-396.
[126]  Lomax C, Liu W J, Wu L, et al. Methylated arsenic species in plants originate from soil microorganisms[J]. New Phytologist, 2012, 193(3): 665-672.
[127]  Meng X Y, Qin J, Wang L H, et al. Arsenic biotransformation and volatilization in transgenic rice[J]. New Phytologist, 2011, 191(1): 49-56.
[128]  Meng L, Zhu Y G. Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: How does it affect functional microbial abundance?[J]. Environmental Science & Technology, 2011, 45(4): 1 579-1 585.
[129]  Peng J, Zhang Y, Su J, et al. Bacterial communities predominant in the degradation of C-13(4)-4, 5, 9, 10-pyrene during composting[J]. Bioresource Technology, 2013, 143:608-614.
[130]  Teng Y, Luo Y, Sun M, et al. Effect of bioaugmentation by Paracoccus sp strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil[J]. Bioresource Technology, 2010, 101(10): 3 437-3 443.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133