All Title Author
Keywords Abstract


DOI: 10.13190/jbupt.200703.126.zhoucl, PP. 126-133

Keywords: Riesz,,Euler-Bernoulli,,边界控制,稳定性

Full-Text   Cite this paper   Add to My Lib




[1]  Guo B Z, Yu R. The Riesz basis property of discrete operators and application to a Euler-Bernoulli beam equation with boundary linear feedback control[J]. IMA J of Math Control Inform, 2001, 18(2): 241-251.
[2]  Curtain R F, Zwart H J. An introduction to infinite dimensional linear system theory[M]. New York: Springer-Verlag, 1995.
[3]  Chen G, Coleman M P. Improving low order eigenfrequency estimates derived from the wave propagation method for an Euler-Bernoulli beam[J]. J Sound Vibration, 1997, 204(4): 696-704.
[4]  Naimark M A. Linear differential operators[M]. New York: Frederick Ungar Publishing Company, 1967.
[5]  Dunford N, Schwartz J T. Linear operators[M]. Part Ⅲ. New York-London-Sydney: John Wiley & Sons, Inc, 1971.
[6]  Locker J. Spectral theory of non-self-adjoint two-point differential operators[M]. Rhode Island: , 2000.
[7]  Gohberg I C, Krein M G. Introduction to the theory of linear nonselfadjoint operators[J]. Trans of Math Monographs Vol.18. AMS Providence, Rhode Island, 1969.
[8]  Luo Z H, Guo B Z, Morgül O. Stability and stabilization of infinite dimensional systems with applications[M]. London: Spring-Verlag, 1999.
[9]  Shkalikov A A. Boundary value problems for ordinary differential equations with a parameter in the boundary conditions[J]. J Soviet Math, 1986, 33: 1311-1342.
[10]  Levin B Ya. Lectures on entire functions[M]. Translations of Mathematical Monographs. Providence: American Mathematical Society, 1996.
[11]  Young R M. An introduction to nonharmonic fourier series[M]. London: Academic Press, 2001.


comments powered by Disqus

Contact Us


微信:OALib Journal