All Title Author
Keywords Abstract


动力统计相结合的未来30年东亚气温年代际预测

, PP. 402-413

Keywords: 东亚表面气温,年代际预测,年代际内部变率,人类强迫

Full-Text   Cite this paper   Add to My Lib

Abstract:

?基于实际气候主要由气候系统自然变率和外强迫影响二者叠加而形成的认识,利用统计和动力相结合的方法对东亚表面气温(EATs)未来30年的演变进行了预测.关于自然变率部分,利用1901~1999年的观测资料,通过计算海温模态与EATs内部变率(EATs_int)的超前-滞后相关,选取几个主要海温模态作为预测因子,建立了EATs_int年代际内部变率的多元线性回归模型.首先对2000~2005年进行了后报检验,发现该模型有较好的预测能力.于是,根据海温模态的准周期性,利用该模型对未来30年进行了预测试验,得到了内部变率的预测结果.关于外强迫影响部分,利用参与政府间气候变化专门委员会第5次评估报告的19个耦合模式的历史试验和21世纪RCP4.5情景的预估结果,通过二阶拟合,得到EATs相对于1970~1999年的趋势变化(即外强迫的影响信号).将得到的内部变率和趋势进行叠加,形成最后的预测结果(Re_EATs).该结果显示:在2010~2040年,温度将呈波动性变化,其中在2015~2030年缓慢降温,之后开始上升.将这一结果与第五期耦合模式相互比较计划(CMIP5)的年代际预测进行对比,发现它与多数单个模式得到的预测结果及多模式预测集合平均的结果定性一致,表明利用统计和动力相结合的方法来预测东亚气温具有一定的合理性.

References

[1]  Knight J R, Allan R J, Folland C K, et al. 2005. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett, 32: L20708, doi: 10.1029/2005GL024233
[2]  Li Q, Ren R C, Cai M, et al. 2012. Attribution of the summer warming since 1970s in Indian Ocean Basin to the inter-decadal change in the seasonal timing of El Ni?o decay phase. Geophys Res Lett, 39: L12702, doi: 10.1029/2012GL052150
[3]  Li S L, Bates G T. 2007. Influence of the Atlantic Multidecadal Oscillation (AMO) on the winter climate of East China. Adv Atmos Sci, 24: 126-135
[4]  Li S L, Luo F F. 2013. Lead-lag connection of the Atlantic Multidecadal Oscillation (AMO) with East Asian surface air temperatures in instrumental records. Atmos Ocn Sci Lett, 6: 138-143
[5]  Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull Amer Meteorol Soc, 93: 485-498
[6]  Tollefson J. 2013. Climate change: The forecast for 2018 is cloudy with record heat. Nature, 499: 139-141
[7]  Wang B, Liu M, Yu Y, et al. 2012. Preliminary evaluations of FGOALS_g2 for decadal predictions. Adv Atmos Sci, 30: 674-683
[8]  Wang Y M, Li S L, Luo D H. 2009. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res, 114: D02112, doi: 10.1029/2008JD010929
[9]  Wang T, Otter? O H, Gao Y Q, et al. 2012. The response of the North Pacific decadal variability to strong tropical volcanic eruptions. Clim Dyn, 39: 2917-2936
[10]  陈威霖, 江志红. 2012. 全球海气耦合模式对中国区域年代际气候变化预测能力的评估. 气候与环境研究, 17: 81-91
[11]  高峰, 辛晓歌, 吴统文. 2012. BCC_CSM1.1对10年尺度全球及区域温度的预测研究. 大气科学, 36: 1165-1179
[12]  钱维宏, 陆波, 祝从文. 2010a. 全球平均温度在21世纪将怎样变化? 科学通报, 55: 1532-1537
[13]  钱维宏, 陆波. 2010b. 千年全球气温中的周期性变化及其成因. 科学通报, 55: 3116-3121
[14]  唐国利, 任国玉. 2005. 近百年中国地表气温变化趋势的再分析. 气候与环境研究, 4: 791-798
[15]  吴波, 周天军. 2012. IAP/LASG气候系统模式FGOALS_gl预测的海表面温度年代际尺度的演变. 科学通报, 57: 1168-1175
[16]  Allan R J, Lindesay J A, Reason C J C. 1995. Multidecadal variability in the climate system over the Indian Ocean region during the austral summer. J Clim, 8: 1853-1873
[17]  Chylek P, Folland C K, Dijkstra H A, et al. 2010. Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation. Geophys Res Lett, 38: L13704, doi: 10.1029/2011GL047501
[18]  Delworth T L, Mann M E. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn, 16: 661-671
[19]  d''Orgeville M, Peltier W R. 2007. On the Pacific decadal oscillation and the Atlantic multidecadal oscillation: might they be related? Geophys Res Lett, 34: L23705, doi: 10.1029/2007GL031584
[20]  Enfield D B, Mestas-Nu?ez A M, Trimble P J. 2001. The Atlantic multidecadal oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett, 28: 2077-2080
[21]  Folland C K, Parker D E, Colman A W, et al. 1999. Large scale modes of ocean surface temperature since the late nineteenth century. In: Navarra A, ed. Beyond El Ni?o: Decadal and Interdecadal Climate Variablity. Berlin: Springer. 73-102
[22]  Fu C B, Qian C, Wu Z H. 2011. Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach. Sci China Earth Sci, 54: 1400-1406
[23]  Hawkins E, Robson J, Sutton R, et al. 2011. Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim Dyn, 37: 2495-2509
[24]  Hoerling M, Hurrell J, Kumar A, et al. 2011. On North American decadal climate for 2011-2020. J Clim, 24: 4519-4528
[25]  Hurrell J W, Delworth T L, Danabasoglu G, et al. 2010. Decadal climate prediction: Opportunities and challenges. In: Harrison H J, Stammer D, eds. Proceeding of OceanObs: Sustained Ocean Observations and Information for Society. Venice: ESA Publication
[26]  Kaplan A, Cane M A, Kushnir Y, et al. 1998. Analyses of global sea surface temperature 1856-1991. J Geophys Res, 103: 567-589
[27]  Keenlyside N S, Latif M, Jungclaus J, et al. 2008. Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453: 84-88
[28]  Luo F F, Li S L, Gao Y Q, et al. 2012. A new method for predicting the decadal component of global SST. Atmos Ocn Sci Lett, 5: 521-526
[29]  Medhaug I, Furevik T. 2011. North Atlantic 20th century multidecadal variability in coupled climate models: Sea surface temperature and ocean overturning circulation. Ocean Sci Disc, 8: 353-396
[30]  Meehl G A, Goddard L, Murphy J, et al. 2009. Decadal prediction: Can it be skillful? Bull Amer Meteorol Soc, 90: 1467-1485
[31]  Mitchell T D, Jones P D. 2005. An improved method of constructing a database of monthly climate observations and associated high resolution grid. Int J Climatol, 25: 693-712
[32]  Mochizuki T, Ishii M, Kimoto M, et al. 2010. Pacific decadal oscillation hindcasts relevant to near-term climate prediction. Proc Natl Acad Sci, 107: 1833-1837
[33]  Murphy J, Kattsov V, Keenlyside N, et al. 2010. Towards prediction of decadal climate variability and change. Proc Environ Sci, 1: 287-304
[34]  Otter? O H, Bentsen M, Drange H, et al. 2010. External forcing as a metronome for Atlantic multidecadal variability. Nature Geo, 3: 688-694
[35]  Pohlmann H, Johann J H, K?hl A, et al. 2009. Initializing Decadal Climate Predictions with the GECCO Oceanic Synthesis: Effects on the North Atlantic. J Clim, 22: 3926-3938
[36]  Power S, Casey T, Folland C, et al. 1999. Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn, 15: 319-324
[37]  Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108: 4407, doi: 10.1029/2002JD002670
[38]  Smith D M, Cusack S, Colman A W, et al. 2007. Improved surface temperature prediction for the coming decadal from a global climate model. Science, 317: 796-799
[39]  Sutton R T, Hodson D L R. 2005. Atlantic Ocean forcing of North American and European summer climate. Science, 309: 115-118
[40]  Sutton R T, Hodson D L R. 2007. Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim, 20: 891-907

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal