All Title Author
Keywords Abstract

PLOS Genetics  2013 

Autophagy Induction Is a Tor- and Tp53-Independent Cell Survival Response in a Zebrafish Model of Disrupted Ribosome Biogenesis

DOI: 10.1371/journal.pgen.1003279

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ribosome biogenesis underpins cell growth and division. Disruptions in ribosome biogenesis and translation initiation are deleterious to development and underlie a spectrum of diseases known collectively as ribosomopathies. Here, we describe a novel zebrafish mutant, titania (ttis450), which harbours a recessive lethal mutation in pwp2h, a gene encoding a protein component of the small subunit processome. The biochemical impacts of this lesion are decreased production of mature 18S rRNA molecules, activation of Tp53, and impaired ribosome biogenesis. In ttis450, the growth of the endodermal organs, eyes, brain, and craniofacial structures is severely arrested and autophagy is up-regulated, allowing intestinal epithelial cells to evade cell death. Inhibiting autophagy in ttis450 larvae markedly reduces their lifespan. Somewhat surprisingly, autophagy induction in ttis450 larvae is independent of the state of the Tor pathway and proceeds unabated in Tp53-mutant larvae. These data demonstrate that autophagy is a survival mechanism invoked in response to ribosomal stress. This response may be of relevance to therapeutic strategies aimed at killing cancer cells by targeting ribosome biogenesis. In certain contexts, these treatments may promote autophagy and contribute to cancer cells evading cell death.

References

[1]  Warner JR (2001) Nascent ribosomes. Cell 107: 133–136. doi: 10.1016/s0092-8674(01)00531-1
[2]  Doudna JA, Rath VL (2002) Structure and function of the eukaryotic ribosome: the next frontier. Cell 109: 153–156. doi: 10.1016/s0092-8674(02)00725-0
[3]  Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14: R1014–1027. doi: 10.1016/j.cub.2004.11.027
[4]  Narla A, Ebert BL (2010) Ribosomopathies: human disorders of ribosome dysfunction. Blood 115: 3196–3205. doi: 10.1182/blood-2009-10-178129
[5]  Stumpf CR, Ruggero D (2011) The cancerous translation apparatus. Curr Opin Genet Dev 21: 474–483. doi: 10.1016/j.gde.2011.03.007
[6]  Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313: 17–42. doi: 10.1016/s0378-1119(03)00629-2
[7]  Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, et al. (2002) 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol Cell 10: 105–115. doi: 10.1016/s1097-2765(02)00579-8
[8]  Ferrari S, Bandi HR, Hofsteenge J, Bussian BM, Thomas G (1991) Mitogen-activated 70K S6 kinase. Identification of in vitro 40 S ribosomal S6 phosphorylation sites. J Biol Chem 266: 22770–22775.
[9]  Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68: 913–963. doi: 10.1146/annurev.biochem.68.1.913
[10]  Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463–477. doi: 10.1016/s1534-5807(04)00099-1
[11]  Kraft C, Deplazes A, Sohrmann M, Peter M (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10: 602–610. doi: 10.1038/ncb1723
[12]  Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8: 931–937. doi: 10.1038/nrm2245
[13]  Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132: 27–42. doi: 10.1016/j.cell.2007.12.018
[14]  He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43: 67–93. doi: 10.1146/annurev-genet-102808-114910
[15]  He C, Bassik MC, Moresi V, Sun K, Wei Y, et al. (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481: 511–515. doi: 10.1038/nature10758
[16]  Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, et al. (2007) The regulation of AMPK beta1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67: 3043–3053. doi: 10.1158/0008-5472.can-06-4149
[17]  Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, et al. (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20: 1981–1991. doi: 10.1091/mbc.e08-12-1248
[18]  Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, et al. (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5: 973–979. doi: 10.4161/auto.5.7.9296
[19]  Lee JW, Park S, Takahashi Y, Wang HG (2010) The association of AMPK with ULK1 regulates autophagy. PLoS ONE 5: e15394 doi:10.1371/journal.pone.0015394.
[20]  Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, et al. (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331: 456–461. doi: 10.1126/science.1196371
[21]  Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13: 132–141. doi: 10.1038/ncb2152
[22]  Roach PJ (2011) AMPK→ULK1→autophagy. Mol Cell Biol 31: 3082–3084. doi: 10.1128/mcb.05565-11
[23]  Ober EA, Verkade H, Field HA, Stainier DY (2006) Mesodermal Wnt2b signalling positively regulates liver specification. Nature 442: 688–691. doi: 10.1038/nature04888
[24]  Dosil M, Bustelo XR (2004) Functional characterization of Pwp2, a WD family protein essential for the assembly of the 90 S pre-ribosomal particle. J Biol Chem 279: 37385–37397. doi: 10.1074/jbc.m404909200
[25]  Bernstein KA, Bleichert F, Bean JM, Cross FR, Baserga SJ (2007) Ribosome biogenesis is sensed at the Start cell cycle checkpoint. Mol Biol Cell 18: 953–964. doi: 10.1091/mbc.e06-06-0512
[26]  Field HA, Ober EA, Roeser T, Stainier DY (2003) Formation of the digestive system in zebrafish. I. Liver morphogenesis. Dev Biol 253: 279–290. doi: 10.1016/s0012-1606(02)00017-9
[27]  Ng AN, de Jong-Curtain TA, Mawdsley DJ, White SJ, Shin J, et al. (2005) Formation of the digestive system in zebrafish: III. Intestinal epithelium morphogenesis. Dev Biol 286: 114–135. doi: 10.1016/j.ydbio.2005.07.013
[28]  de Jong-Curtain TA, Parslow AC, Trotter AJ, Hall NE, Verkade H, et al. (2009) Abnormal nuclear pore formation triggers apoptosis in the intestinal epithelium of elys-deficient zebrafish. Gastroenterology 136: 902–911. doi: 10.1053/j.gastro.2008.11.012
[29]  Davuluri G, Gong W, Yusuff S, Lorent K, Muthumani M, et al. (2008) Mutation of the zebrafish nucleoporin elys sensitizes tissue progenitors to replication stress. PLoS Genet 4: e1000240 doi:10.1371/journal.pgen.1000240.
[30]  Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PD, et al. (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334: 213–223. doi: 10.1016/j.ydbio.2009.07.017
[31]  Farooq M, Sulochana KN, Pan X, To J, Sheng D, et al. (2008) Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol 317: 336–353. doi: 10.1016/j.ydbio.2008.02.034
[32]  Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40: 216–227. doi: 10.1016/j.molcel.2010.09.024
[33]  Cui J, Sim TH, Gong Z, Shen HM (2012) Generation of transgenic zebrafish with liver-specific expression of EGFP-Lc3: a new in vivo model for investigation of liver autophagy. Biochem Biophys Res Commun 422: 268–273. doi: 10.1016/j.bbrc.2012.04.145
[34]  He C, Bartholomew CR, Zhou W, Klionsky DJ (2009) Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. Autophagy 5: 520–526. doi: 10.4161/auto.5.4.7768
[35]  Noda T, Ohsumi Y (1998) Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem 273: 3963–3966. doi: 10.1074/jbc.273.7.3963
[36]  Hu Z, Zhang J, Zhang Q (2011) Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis. Autophagy 7: 1514–1527. doi: 10.4161/auto.7.12.18040
[37]  Marshall KE, Tomasini AJ, Makky K, Kumar S, Mayer AN (2010) Dynamic lkb1-TORC1 signaling as a possible mechanism for regulating the endoderm-intestine transition. Dev Dyn doi: 10.1002/dvdy.22437
[38]  Scott RC, Schuldiner O, Neufeld TP (2004) Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 7: 167–178. doi: 10.1016/j.devcel.2004.07.009
[39]  Zeng X, Kinsella TJ (2008) Mammalian target of rapamycin and S6 kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 68: 2384–2390. doi: 10.1158/0008-5472.can-07-6163
[40]  Kim SH, Speirs CK, Solnica-Krezel L, Ess KC (2011) Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin. Dis Model Mech 4: 255–267.
[41]  Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16: 369–377. doi: 10.1016/j.ccr.2009.09.024
[42]  Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, et al. (2010) Autophagy regulation by p53. Curr Opin Cell Biol 22: 181–185. doi: 10.1016/j.ceb.2009.12.001
[43]  Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, et al. (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102: 407–412. doi: 10.1073/pnas.0406252102
[44]  Leevers SJ, McNeill H (2005) Controlling the size of organs and organisms. Curr Opin Cell Biol 17: 604–609. doi: 10.1016/j.ceb.2005.09.008
[45]  Mayer AN, Fishman MC (2003) Nil per os encodes a conserved RNA recognition motif protein required for morphogenesis and cytodifferentiation of digestive organs in zebrafish. Development 130: 3917–3928. doi: 10.1242/dev.00600
[46]  Makky K, Tekiela J, Mayer AN (2007) Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Dev Biol 303: 501–513. doi: 10.1016/j.ydbio.2006.11.030
[47]  Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32: 2–11. doi: 10.1128/mcb.06159-11
[48]  Behrends C, Sowa ME, Gygi SP, Harper JW (2010) Network organization of the human autophagy system. Nature 466: 68–76. doi: 10.1038/nature09204
[49]  Budovskaya YV, Stephan JS, Reggiori F, Klionsky DJ, Herman PK (2004) The Ras/cAMP-dependent protein kinase signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279: 20663–20671. doi: 10.1074/jbc.m400272200
[50]  Yorimitsu T, Zaman S, Broach JR, Klionsky DJ (2007) Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 18: 4180–4189. doi: 10.1091/mbc.e07-05-0485
[51]  Xu P, Das M, Reilly J, Davis RJ (2011) JNK regulates FoxO-dependent autophagy in neurons. Genes Dev 25: 310–322. doi: 10.1101/gad.1984311
[52]  Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18: 571–580. doi: 10.1038/cdd.2010.191
[53]  Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462: 245–253. doi: 10.1016/j.abb.2007.03.034
[54]  Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9: 1004–1010. doi: 10.1038/nrm2529
[55]  Pereboom TC, van Weele LJ, Bondt A, MacInnes AW (2011) A zebrafish model of dyskeratosis congenita reveals hematopoietic stem cell formation failure resulting from ribosomal protein-mediated p53 stabilization. Blood 118: 5458–5465. doi: 10.1182/blood-2011-04-351460
[56]  Zhang Y, Morimoto K, Danilova N, Zhang B, Lin S (2012) Zebrafish Models for Dyskeratosis Congenita Reveal Critical Roles of p53 Activation Contributing to Hematopoietic Defects through RNA Processing. PLoS ONE 7: e30188 doi:10.1371/journal.pone.0030188.
[57]  Reichenbach B, Delalande JM, Kolmogorova E, Prier A, Nguyen T, et al. (2008) Endoderm-derived Sonic hedgehog and mesoderm Hand2 expression are required for enteric nervous system development in zebrafish. Dev Biol 318: 52–64. doi: 10.1016/j.ydbio.2008.02.061
[58]  Christie EL, Parslow AC, Heath JK (2008) Determination of mRNA and protein expression patterns in zebrafish. Methods Mol Biol 469: 253–272. doi: 10.1007/978-1-59745-249_18
[59]  Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156–159. doi: 10.1016/0003-2697(87)90021-2
[60]  Azuma M, Toyama R, Laver E, Dawid IB (2006) Perturbation of rRNA synthesis in the bap28 mutation leads to apoptosis mediated by p53 in the zebrafish central nervous system. J Biol Chem 281: 13309–13316. doi: 10.1074/jbc.m601892200
[61]  Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, et al. (2011) AKT promotes rRNA synthesis and cooperates with c-MYC to stimulate ribosome biogenesis in cancer. Sci Signal 4: ra56. doi: 10.1126/scisignal.2001754
[62]  Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43. doi: 10.1016/s0022-5320(69)90033-1

Full-Text

comments powered by Disqus