All Title Author
Keywords Abstract

PLOS Genetics  2015 

Tissue-Specific Effects of Reduced β-catenin Expression on Adenomatous Polyposis Coli Mutation-Instigated Tumorigenesis in Mouse Colon and Ovarian Epithelium

DOI: 10.1371/journal.pgen.1005638

Full-Text   Cite this paper   Add to My Lib


Adenomatous polyposis coli (APC) inactivating mutations are present in most human colorectal cancers and some other cancers. The APC protein regulates the β-catenin protein pool that functions as a co-activator of T cell factor (TCF)-regulated transcription in Wnt pathway signaling. We studied effects of reduced dosage of the Ctnnb1 gene encoding β-catenin in Apc-mutation-induced colon and ovarian mouse tumorigenesis and cell culture models. Concurrent somatic inactivation of one Ctnnb1 allele, dramatically inhibited Apc mutation-induced colon polyposis and greatly extended Apc-mutant mouse survival. Ctnnb1 hemizygous dose markedly inhibited increases in β-catenin levels in the cytoplasm and nucleus following Apc inactivation in colon epithelium, with attenuated expression of key β-catenin/TCF-regulated target genes, including those encoding the EphB2/B3 receptors, the stem cell marker Lgr5, and Myc, leading to maintenance of crypt compartmentalization and restriction of stem and proliferating cells to the crypt base. A critical threshold for β-catenin levels in TCF-regulated transcription was uncovered for Apc mutation-induced effects in colon epithelium, along with evidence of a feed-forward role for β-catenin in Ctnnb1 gene expression and CTNNB1 transcription. The active β-catenin protein pool was highly sensitive to CTNNB1 transcript levels in colon cancer cells. In mouse ovarian endometrioid adenocarcinomas (OEAs) arising from Apc- and Pten-inactivation, while Ctnnb1 hemizygous dose affected β-catenin levels and some β-catenin/TCF target genes, Myc induction was retained and OEAs arose in a fashion akin to that seen with intact Ctnnb1 gene dose. Our findings indicate Ctnnb1 gene dose exerts tissue-specific differences in Apc mutation-instigated tumorigenesis. Differential expression of selected β-catenin/TCF-regulated genes, such as Myc, likely underlies context-dependent effects of Ctnnb1 gene dosage in tumorigenesis.


[1]  Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol. 2011;6:479–507. Epub 2010/11/26. eng. doi: 10.1146/annurev-pathol-011110-130235. pmid:21090969
[2]  Rustgi AK. The genetics of hereditary colon cancer. Genes Dev. 2007;21(20):2525–38. Epub 2007/10/17. eng. pmid:17938238 doi: 10.1101/gad.1593107
[3]  Moser AR, Shoemaker AR, Connelly CS, Clipson L, Gould KA, Luongo C, et al. Homozygosity for the Min allele of Apc results in disruption of mouse development prior to gastrulation. Developmental dynamics: an official publication of the American Association of Anatomists. 1995;203(4):422–33. doi: 10.1002/aja.1002030405
[4]  Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci. 2007;120(Pt 19):3327–35. Epub 2007/09/21. eng. doi: 10.1242/jcs.03485
[5]  Brocardo M, Henderson BR. APC shuttling to the membrane, nucleus and beyond. Trends in cell biology. 2008;18(12):587–96. doi: 10.1016/j.tcb.2008.09.002. pmid:18848448
[6]  Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev. 2007;17(1):45–51. Epub 2007/01/09. eng. pmid:17208432 doi: 10.1016/j.gde.2006.12.007
[7]  Mosimann C, Hausmann G, Basler K. Beta-catenin hits chromatin: regulation of Wnt target gene activation. Nature reviews Molecular cell biology. 2009;10(4):276–86. doi: 10.1038/nrm2654. pmid:19305417
[8]  Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449(7165):1003–7. Epub 2007/10/16. eng. pmid:17934449 doi: 10.1038/nature06196
[9]  Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell. 2012;149(6):1192–205. Epub 2012/06/12. eng. doi: 10.1016/j.cell.2012.05.012. pmid:22682243
[10]  van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111(2):241–50. Epub 2002/11/01. eng. pmid:12408868 doi: 10.1016/s0092-8674(02)01014-0
[11]  Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G, et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111(2):251–63. Epub 2002/11/01. eng. pmid:12408869 doi: 10.1016/s0092-8674(02)01015-2
[12]  Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18(12):1385–90. Epub 2004/06/17. eng. pmid:15198980 doi: 10.1101/gad.287404
[13]  Segditsas S, Tomlinson I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene. 2006;25(57):7531–7. pmid:17143297 doi: 10.1038/sj.onc.1210059
[14]  Bakker ER, Hoekstra E, Franken PF, Helvensteijn W, van Deurzen CH, van Veelen W, et al. beta-Catenin signaling dosage dictates tissue-specific tumor predisposition in Apc-driven cancer. Oncogene. 2013;32(38):4579–85. doi: 10.1038/onc.2012.449. pmid:23045279
[15]  Buchert M, Athineos D, Abud HE, Burke ZD, Faux MC, Samuel MS, et al. Genetic dissection of differential signaling threshold requirements for the Wnt/beta-catenin pathway in vivo. PLoS genetics. 2010;6(1):e1000816. doi: 10.1371/journal.pgen.1000816. pmid:20084116
[16]  Akyol A, Hinoi T, Feng Y, Bommer GT, Glaser TM, Fearon ER. Generating somatic mosaicism with a Cre recombinase-microsatellite sequence transgene. Nat Methods. 2008;5(3):231–3. Epub 2008/02/12. eng. doi: 10.1038/nmeth.1182. pmid:18264107
[17]  Feng Y, Sentani K, Wiese A, Sands E, Green M, Bommer GT, et al. Sox9 induction, ectopic Paneth cells, and mitotic spindle axis defects in mouse colon adenomatous epithelium arising from conditional biallelic Apc inactivation. The American journal of pathology. 2013;183(2):493–503. doi: 10.1016/j.ajpath.2013.04.013. pmid:23769888
[18]  Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469(7330):415–8. Epub 2010/11/30. eng. doi: 10.1038/nature09637. pmid:21113151
[19]  Andreu P, Colnot S, Godard C, Gad S, Chafey P, Niwa-Kawakita M, et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development. 2005;132(6):1443–51. Epub 2005/02/18. eng. pmid:15716339 doi: 10.1242/dev.01700
[20]  Andreu P, Peignon G, Slomianny C, Taketo MM, Colnot S, Robine S, et al. A genetic study of the role of the Wnt/beta-catenin signalling in Paneth cell differentiation. Dev Biol. 2008;324(2):288–96. Epub 2008/10/25. eng. doi: 10.1016/j.ydbio.2008.09.027. pmid:18948094
[21]  Hirata A, Utikal J, Yamashita S, Aoki H, Watanabe A, Yamamoto T, et al. Dose-dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium. Development. 2013;140(1):66–75. Epub 2012/12/12. eng. doi: 10.1242/dev.084103. pmid:23222438
[22]  Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer research. 2006;66(1):2–5. pmid:16397205 doi: 10.1158/0008-5472.can-05-3849
[23]  Cortina C, Palomo-Ponce S, Iglesias M, Fernandez-Masip JL, Vivancos A, Whissell G, et al. EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nature genetics. 2007;39(11):1376–83. pmid:17906625 doi: 10.1038/ng.2007.11
[24]  Nishimura S, Wakabayashi N, Toyoda K, Kashima K, Mitsufuji S. Expression of Musashi-1 in human normal colon crypt cells: a possible stem cell marker of human colon epithelium. Dig Dis Sci. 2003;48(8):1523–9. Epub 2003/08/20. eng. pmid:12924647
[25]  Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, et al. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation. 2003;71(1):28–41. Epub 2003/02/01. eng. pmid:12558601 doi: 10.1046/j.1432-0436.2003.700603.x
[26]  He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12. pmid:9727977 doi: 10.1126/science.281.5382.1509
[27]  Staal FJ, Noort Mv M, Strous GJ, Clevers HC. Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO reports. 2002;3(1):63–8. pmid:11751573 doi: 10.1093/embo-reports/kvf002
[28]  van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H. Wnt signaling controls the phosphorylation status of beta-catenin. The Journal of biological chemistry. 2002;277(20):17901–5. pmid:11834740 doi: 10.1074/jbc.m111635200
[29]  Wu R, Hendrix-Lucas N, Kuick R, Zhai Y, Schwartz DR, Akyol A, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/beta-catenin and PI3K/Pten signaling pathways. Cancer cell. 2007;11(4):321–33. pmid:17418409 doi: 10.1016/j.ccr.2007.02.016
[30]  Moreno-Bueno G, Gamallo C, Perez-Gallego L, de Mora JC, Suarez A, Palacios J. beta-Catenin expression pattern, beta-catenin gene mutations, and microsatellite instability in endometrioid ovarian carcinomas and synchronous endometrial carcinomas. Diagnostic molecular pathology: the American journal of surgical pathology, part B. 2001;10(2):116–22. doi: 10.1097/00019606-200106000-00008
[31]  Sagae S, Kobayashi K, Nishioka Y, Sugimura M, Ishioka S, Nagata M, et al. Mutational analysis of beta-catenin gene in Japanese ovarian carcinomas: frequent mutations in endometrioid carcinomas. Japanese journal of cancer research: Gann. 1999;90(5):510–5. pmid:10391090 doi: 10.1111/j.1349-7006.1999.tb00777.x
[32]  Wright K, Wilson P, Morland S, Campbell I, Walsh M, Hurst T, et al. beta-catenin mutation and expression analysis in ovarian cancer: exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. International journal of cancer Journal international du cancer. 1999;82(5):625–9. pmid:10417756 doi: 10.1002/(sici)1097-0215(19990827)82:5<625::aid-ijc1>;2-2
[33]  Wu R, Zhai Y, Fearon ER, Cho KR. Diverse mechanisms of beta-catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer research. 2001;61(22):8247–55. Epub 2001/11/24. eng. pmid:11719457
[34]  Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67. Epub 1990/06/01. eng. pmid:2188735 doi: 10.1016/0092-8674(90)90186-i
[35]  Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70. Epub 1996/10/18. eng. pmid:8861899 doi: 10.1016/s0092-8674(00)81333-1
[36]  Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ, et al. The 'just-right' signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Human molecular genetics. 2002;11(13):1549–60. pmid:12045208 doi: 10.1093/hmg/11.13.1549
[37]  Athineos D, Sansom OJ. Myc heterozygosity attenuates the phenotypes of APC deficiency in the small intestine. Oncogene. 2010;29(17):2585–90. doi: 10.1038/onc.2010.5. pmid:20140021
[38]  Reed KR, Athineos D, Meniel VS, Wilkins JA, Ridgway RA, Burke ZD, et al. B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(48):18919–23. doi: 10.1073/pnas.0805778105. pmid:19033191
[39]  Sansom OJ, Meniel VS, Muncan V, Phesse TJ, Wilkins JA, Reed KR, et al. Myc deletion rescues Apc deficiency in the small intestine. Nature. 2007;446(7136):676–9. pmid:17377531 doi: 10.1038/nature05674
[40]  Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science. 1997;278(5335):120–3. Epub 1997/10/06. eng. pmid:9311916 doi: 10.1126/science.278.5335.120
[41]  Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development. 2001;128(8):1253–64. Epub 2001/03/23. eng. pmid:11262227
[42]  Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol. 2001;1:4. Epub 2001/04/12. eng. pmid:11299042
[43]  Lustig B, Jerchow B, Sachs M, Weiler S, Pietsch T, Karsten U, et al. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol Cell Biol. 2002;22(4):1184–93. Epub 2002/01/26. eng. pmid:11809809 doi: 10.1128/mcb.22.4.1184-1193.2002
[44]  Roig AI, Eskiocak U, Hight SK, Kim SB, Delgado O, Souza RF, et al. Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro. Gastroenterology. 2010;138(3):1012–21 e1–5. Epub 2009/12/08. eng. doi: 10.1053/j.gastro.2009.11.052. pmid:19962984
[45]  Feng Y, Bommer GT, Zhai Y, Akyol A, Hinoi T, Winer I, et al. Drosophila split ends homologue SHARP functions as a positive regulator of Wnt/beta-catenin/T-cell factor signaling in neoplastic transformation. Cancer research. 2007;67(2):482–91. Epub 2007/01/20. eng. pmid:17234755 doi: 10.1158/0008-5472.can-06-2314
[46]  Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, et al. Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci. 2000;22(1–2):139–53. Epub 2000/02/05. eng. pmid:10657706 doi: 10.1159/000017435
[47]  Sakakibara S, Imai T, Hamaguchi K, Okabe M, Aruga J, Nakajima K, et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol. 1996;176(2):230–42. Epub 1996/06/15. eng. pmid:8660864 doi: 10.1006/dbio.1996.0130


comments powered by Disqus

Contact Us


微信:OALib Journal