
Statistics 2014
Full absorption statistics of diffusing particles with exclusionDOI: 10.1088/17425468/2015/04/P04009 Abstract: Suppose that an infinite lattice gas of constant density $n_0$, whose dynamics are described by the symmetric simple exclusion process, is brought in contact with a spherical absorber of radius $R$. Employing the macroscopic fluctuation theory and assuming the additivity principle, we evaluate the probability distribution ${\mathcal P}(N)$ that $N$ particles are absorbed during a long time $T$. The limit of $N=0$ corresponds to the survival problem, whereas $N\gg \bar{N}$ describes the opposite extreme. Here $\bar{N}=4\pi R D_0 n_0 T$ is the \emph{average} number of absorbed particles (in three dimensions), and $D_0$ is the gas diffusivity. For $n_0\ll 1$ the exclusion effects are negligible, and ${\mathcal P}(N)$ can be approximated, for not too large $N$, by the Poisson distribution with mean $\bar{N}$. For finite $n_0$, ${\mathcal P}(N)$ is nonPoissonian. We show that $\ln{\mathcal P}(N) \simeq n_0 N^2/\bar{N}$ at $N\gg \bar{N}$. At sufficiently large $N$ and $n_0<1/2$ the most likely density profile of the gas, conditional on the absorption of $N$ particles, is nonmonotonic in space. We also establish a close connection between this problem and that of statistics of current in finite open systems.
