全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Statistics  2014 

Sparse Bayesian Unsupervised Learning

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper is about variable selection, clustering and estimation in an unsupervised high-dimensional setting. Our approach is based on fitting constrained Gaussian mixture models, where we learn the number of clusters $K$ and the set of relevant variables $S$ using a generalized Bayesian posterior with a sparsity inducing prior. We prove a sparsity oracle inequality which shows that this procedure selects the optimal parameters $K$ and $S$. This procedure is implemented using a Metropolis-Hastings algorithm, based on a clustering-oriented greedy proposal, which makes the convergence to the posterior very fast.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133