All Title Author
Keywords Abstract


Optimal Dynamic Portfolio with Mean-CVaR Criterion

Full-Text   Cite this paper   Add to My Lib

Abstract:

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are popular risk measures from academic, industrial and regulatory perspectives. The problem of minimizing CVaR is theoretically known to be of Neyman-Pearson type binary solution. We add a constraint on expected return to investigate the Mean-CVaR portfolio selection problem in a dynamic setting: the investor is faced with a Markowitz type of risk reward problem at final horizon where variance as a measure of risk is replaced by CVaR. Based on the complete market assumption, we give an analytical solution in general. The novelty of our solution is that it is no longer Neyman-Pearson type where the final optimal portfolio takes only two values. Instead, in the case where the portfolio value is required to be bounded from above, the optimal solution takes three values; while in the case where there is no upper bound, the optimal investment portfolio does not exist, though a three-level portfolio still provides a sub-optimal solution.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal