All Title Author
Keywords Abstract


Multiresolution topological simplification

Full-Text   Cite this paper   Add to My Lib

Abstract:

Persistent homology has been devised as a promising tool for the topological simplification of complex data. However, it is computationally intractable for large data sets. In this work, we introduce multiresolution persistent homology for tackling large data sets. Our basic idea is to match the resolution with the scale of interest so as to create a topological microscopy for the underlying data. We utilize flexibility-rigidity index (FRI) to access the topological connectivity of the data set and define a rigidity density for the filtration analysis. By appropriately tuning the resolution, we are able to focus the topological lens on a desirable scale. The proposed multiresolution topological analysis is validated by a hexagonal fractal image which has three distinct scales. We further demonstrate the proposed method for extracting topological fingerprints from DNA and RNA molecules. In particular, the topological persistence of a virus capsid with 240 protein monomers is successfully analyzed which would otherwise be inaccessible to the normal point cloud method and unreliable by using coarse-grained multiscale persistent homology. The proposed method has also been successfully applied to the protein domain classification, which is the first time that persistent homology is used for practical protein domain analysis, to our knowledge. The proposed multiresolution topological method has potential applications in arbitrary data sets, such as social networks, biological networks and graphs.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal