All Title Author
Keywords Abstract


Quotient complexity of ideal languages

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the state complexity of regular operations in the class of ideal languages. A language L over an alphabet Sigma is a right (left) ideal if it satisfies L = L Sigma* (L = Sigma* L). It is a two-sided ideal if L = Sigma* L Sigma *, and an all-sided ideal if it is the shuffle of Sigma* with L. We prefer the term "quotient complexity" instead of "state complexity", and we use derivatives to calculate upper bounds on quotient complexity, whenever it is convenient. We find tight upper bounds on the quotient complexity of each type of ideal language in terms of the complexity of an arbitrary generator and of its minimal generator, the complexity of the minimal generator, and also on the operations union, intersection, set difference, symmetric difference, concatenation, star and reversal of ideal languages.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal