全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Myopic Learning in Repeated Stochastic Games

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper addresses learning in repeated stochastic games (RSGs) played against unknown associates. Learning in RSGs is extremely challenging due to their inherently large strategy spaces. Furthermore, these games typically have multiple (often infinite) equilibria, making attempts to solve them via equilibrium analysis and rationality assumptions wholly insufficient. As such, previous learning algorithms for RSGs either learn very slowly or make extremely limiting assumptions about the game structure or associates' behaviors. In this paper, we propose and evaluate the notion of game abstraction by experts (Gabe) for two-player general-sum RSGs. Gabe reduces an RSG to a multi-armed bandit problem, which can then be solved using an expert algorithm. Gabe maintains many aspects of the original game, including security and Pareto optimal Nash equilibria. We demonstrate that Gabe substantially outperforms existing algorithms in many scenarios.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133