All Title Author
Keywords Abstract

AlexU-Word: A New Dataset for Isolated-Word Closed-Vocabulary Offline Arabic Handwriting Recognition

Full-Text   Cite this paper   Add to My Lib


In this paper, we introduce the first phase of a new dataset for offline Arabic handwriting recognition. The aim is to collect a very large dataset of isolated Arabic words that covers all letters of the alphabet in all possible shapes using a small number of simple words. The end goal is to collect a very large dataset of segmented letter images, which can be used to build and evaluate Arabic handwriting recognition systems that are based on segmented letter recognition. The current version of the dataset contains $25114$ samples of $109$ unique Arabic words that cover all possible shapes of all alphabet letters. The samples were collected from $907$ writers. In its current form, the dataset can be used for the problem of closed-vocabulary word recognition. We evaluated a number of window-based descriptors and classifiers on this task and obtained an accuracy of $92.16\%$ using a SIFT-based descriptor and ANN.


comments powered by Disqus

Contact Us


微信:OALib Journal