All Title Author
Keywords Abstract

GABA through the Ages: Regulation of Cortical Function and Plasticity by Inhibitory Interneurons

DOI: 10.1155/2012/892784

Full-Text   Cite this paper   Add to My Lib


Inhibitory interneurons comprise only about 20% of cortical neurons and thus constitute a clear minority compared to the vast number of excitatory projection neurons. They are, however, an influential minority with important roles in cortical maturation, function, and plasticity. In this paper, we will highlight the functional importance of cortical inhibition throughout brain development, starting with the embryonal formation of the cortex, proceeding by the regulation of sensory cortical plasticity in adulthood, and finishing with the GABA involvement in sensory information processing in old age. 1. Introduction The functioning of the cerebral cortex depends critically on the precise balance between excitatory and inhibitory neurotransmitter systems. Excitation is mediated via glutamate by pyramidal neurons, the projection neurons of the cortex, and by a special class of local neurons in cortical layer IV, the spiny stellate cells. Inhibition is mediated via γ-aminobutyric acid (GABA) by cortical interneurons, which regulate the degree of glutamatergic excitation, filtering the input and regulate the output of projection neurons. GABAergic interneurons, the “nonpyramidal cells” of the cerebral cortex, take many different forms of dendritic and axonal arborization, which have been used for their morphological classification ever since their first description by Ramon Cajal [1–5]. Moreover, interneurons also differ in their firing patterns, the neuropeptides they express, their calcium-binding protein content, and other molecular markers such as ion channels, receptors, and transporters. Based on the combination of structural, functional, and biochemical criteria, interneurons have been subdivided into many different subclasses and it is still a matter of hot debate among the experts of how many interneuron subtypes exist in the cortices of different species [6–8]. At the circuit level, interneurons control the flow of information and synchronization in the cerebral cortex. There are about five times more glutamatergic neurons than GABAergic neurons in the neocortex; this ratio is consistently observed across many mammalian species. This then suggests that the numerical balance of excitatory and inhibitory neurons may be important for normal brain function and behavior. Even though GABAergic interneurons comprise only a small fraction of the cells in the neocortex, disturbances in their development, and hence the delicate balance between excitation and inhibition, can lead to neurological or neuropsychiatric diseases such as epilepsy, autism, and


[1]  S. R. Y. Cajal, “Structure and connections of neurons,” Bulletin of the Los Angeles Neurological Society, vol. 17, no. 1-2, pp. 5–46, 1952.
[2]  E. G. Jones, “Varieties and distribution of non pyramidal cells in the somatic sensory cortex of the squirrel monkey,” Journal of Comparative Neurology, vol. 160, no. 2, pp. 205–267, 1975.
[3]  J. DeFelipe, “Cortical interneurons: from Cajal to 2001,” Progress in Brain Research, vol. 136, pp. 215–238, 2002.
[4]  Y. Kawaguchi and S. Kondo, “Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex,” Brain Cell Biology, vol. 31, no. 3-5, pp. 277–287, 2002.
[5]  R. Batista-Brito and G. Fishell, “Chapter 3 the developmental Integration of cortical interneurons into a functional network,” Current Topics in Developmental Biology, vol. 87, pp. 81–118, 2009.
[6]  H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu, “Interneurons of the neocortical inhibitory system,” Nature Reviews Neuroscience, vol. 5, no. 10, pp. 793–807, 2004.
[7]  G. A. Ascoli, L. Alonso-Nanclares, S. A. Anderson et al., “Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 557–568, 2008.
[8]  R. Batista-Brito, R. MacHold, C. Klein, and G. Fishell, “Gene expression in cortical interneuron precursors is prescient of their mature function,” Cerebral Cortex, vol. 18, no. 10, pp. 2306–2317, 2008.
[9]  G. Sanacora, G. F. Mason, and J. H. Krystal, “Impairment of GABAergic transmission in depression: new insights from neuroimaging studies,” Critical Reviews in Neurobiology, vol. 14, no. 1, pp. 23–45, 2000.
[10]  J. M. Rennie and G. B. Boylan, “Neonatal seizures and their treatment,” Current Opinion in Neurology, vol. 16, no. 2, pp. 177–181, 2003.
[11]  P. Levitt, “Developmental neurobiology and clinical disorders: lost in translation?” Neuron, vol. 46, no. 3, pp. 407–412, 2005.
[12]  D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory neurons and schizophrenia,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 312–324, 2005.
[13]  P. Levitt, K. L. Eagleson, and E. M. Powell, “Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders,” Trends in Neurosciences, vol. 27, no. 7, pp. 400–406, 2004.
[14]  P. Rakic, “Radial versus tangential migration of neuronal clones in the developing cerebral cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11323–11327, 1995.
[15]  A. A. Lavdas, M. Grigoriou, V. Pachnis, and J. G. Parnavelas, “The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex,” Journal of Neuroscience, vol. 19, no. 18, pp. 7881–7888, 1999.
[16]  J. G. Parnavelas, S. A. Anderson, A. A. Lavdas, M. Grigoriou, V. Pachnis, and J. L. R. Rubenstein, “The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex,” Novartis Foundation Symposium, vol. 228, pp. 129–147, 2000.
[17]  S. A. Anderson, O. Marín, C. Horn, K. Jennings, and J. L. R. Rubenstein, “Distinct cortical migrations from the medial and lateral ganglionic eminences,” Development, vol. 128, no. 3, pp. 353–363, 2001.
[18]  O. Marín and J. L. R. Rubenstein, “A long, remarkable journey: tangential migration in the telencephalon,” Nature Reviews Neuroscience, vol. 2, no. 11, pp. 780–790, 2001.
[19]  S. Nery, H. Wichterle, and G. Fishell, “Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain,” Development, vol. 128, no. 4, pp. 527–540, 2001.
[20]  H. Wichterle, D. H. Turnbull, S. Nery, G. Fishell, and A. Alvarez-Buylla, “In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain,” Development, vol. 128, no. 19, pp. 3759–3771, 2001.
[21]  L. R. Hernández-Miranda, J. G. Parnavelas, and F. Chiara, “Molecules and mechanisms involved in the generation and migration of cortical interneurons,” ASN Neuro, vol. 2, no. 2, pp. 75–86, 2010.
[22]  E. Rossignol, “Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders,” Neural Plasticity, vol. 2011, Article ID 649325, 2011.
[23]  O. Marín, A. Yaron, A. Bagri, M. Tessier-Lavigne, and J. L. R. Rubenstein, “Sorting of striatal and cortical interneurons regulated by semaphorin-neuropilin interactions,” Science, vol. 293, no. 5531, pp. 872–875, 2001.
[24]  W. Andrews, M. Barber, L. R. Hernadez-Miranda et al., “The role of Slit-Robo signaling in the generation, migration and morphological differentiation of cortical interneurons,” Developmental Biology, vol. 313, no. 2, pp. 648–658, 2008.
[25]  N. Flames, J. E. Long, A. N. Garratt et al., “Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1,” Neuron, vol. 44, no. 2, pp. 251–561, 2004.
[26]  J. G. Flanagan and P. Vanderhaeghen, “The ephrins and Eph receptors in neural development,” Annual Review of Neuroscience, vol. 21, pp. 309–345, 1998.
[27]  J. P. Himanen, M. J. Chumley, M. Lackmann et al., “Repelling class discrimination: Ephrin-A5 binds to and activates EphB2 receptor signaling,” Nature Neuroscience, vol. 7, no. 5, pp. 501–509, 2004.
[28]  A. Martínez and E. Soriano, “Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system,” Brain Research Reviews, vol. 49, no. 2, pp. 211–226, 2005.
[29]  A. Davy and P. Soriano, “Ephrin signaling in vivo: look both ways,” Developmental Dynamics, vol. 232, no. 1, pp. 1–10, 2005.
[30]  R. Klein, “Bidirectional modulation of synaptic functions by Eph/ephrin signaling,” Nature Neuroscience, vol. 12, no. 1, pp. 15–20, 2009.
[31]  J. Egea and R. Klein, “Bidirectional Eph-ephrin signaling during axon guidance,” Trends in Cell Biology, vol. 17, no. 5, pp. 230–238, 2007.
[32]  J. Rudolph, G. Zimmer, A. Steinecke, S. Barchmann, and J. Bolz, “Ephrins guide migrating cortical interneurons in the basal telencephalon,” Cell Adhesion and Migration, vol. 4, no. 3, pp. 400–408, 2010.
[33]  G. Zimmer, J. Rudolph, J. Landmann et al., “Bidirectional EphrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence-and preoptic area-derived interneurons in the deep and superficial migratory stream,” Journal of Neuroscience, vol. 31, no. 50, pp. 18364–18380, 2011.
[34]  G. Zimmer, P. Garcez, J. Rudolph et al., “Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons,” European Journal of Neuroscience, vol. 28, no. 1, pp. 62–73, 2008.
[35]  A. Steinecke, J. Rudolph, G. Zimmer, S. Barchmann, and J. Bolz, “A dual role of EphA4 signaling in the basal telencephalon during interneuron migration,” Society for Neuroscience, Abstract, 2010, Neuroscience Meeting Planner.
[36]  D. H. Blackwood, P. M. Visscher, and W. J. Muir, “Genetic studies of bipolar affective disorder in large families,” The British Journal of Psychiatry, vol. 41, pp. s134–s136, 2001.
[37]  J. E. Chubb, N. J. Bradshaw, D. C. Soares, D. J. Porteous, and J. K. Millar, “The DISC locus in psychiatric illness,” Molecular Psychiatry, vol. 13, no. 1, pp. 36–64, 2008.
[38]  N. J. Brandon and A. Sawa, “Linking neurodevelopmental and synaptic theories of mental illness through DISC1,” Nature Reviews Neuroscience, vol. 12, no. 12, pp. X707–X722, 2011.
[39]  N. J. Brandon, J. K. Millar, C. Korth, H. Sive, K. K. Singh, and A. Sawa, “Understanding the role of DISC1 in psychiatric disease and during normal development,” Journal of Neuroscience, vol. 29, no. 41, pp. 12768–12775, 2009.
[40]  A. Kamiya, K. I. Kubo, T. Tomoda et al., “A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development,” Nature Cell Biology, vol. 7, no. 12, pp. 1067–1078, 2005.
[41]  T. L. Young-Pearse, S. Suth, E. S. Luth, A. Sawa, and D. J. Selkoe, “Biochemical and functional interaction of disrupted-in-schizophrenia 1 and amyloid precursor protein regulates neuronal migration during mammalian cortical development,” Journal of Neuroscience, vol. 30, no. 31, pp. 10431–10440, 2010.
[42]  N. J. Brandon, E. J. Handford, I. Schurov et al., “Disrupted in Schizophrenia 1 and Nudel form a neurodevelopmentally regulated protein complex: implications for schizophrenia and other major neurological disorders,” Molecular and Cellular Neuroscience, vol. 25, no. 1, pp. 42–55, 2004.
[43]  Q. Wang and N. J. Brandon, “Regulation of the cytoskeleton by Disrupted-in-Schizophrenia 1 (DISC1),” Molecular and Cellular Neuroscience, vol. 48, no. 4, pp. 359–364, 2011.
[44]  A. Steinecke, C. Gampe, C. Valkova, C. Kaether, and J. Bolz, “Disrupted-in-schizophrenia 1 (DISC1) is necessary for the correct migration of cortical interneurons,” Journal of Neuroscience, vol. 32, no. 2, pp. 738–745, 2012.
[45]  D. A. Lewis and P. Levitt, “Schizophrenia as a disorder of neurodevelopment,” Annual Review of Neuroscience, vol. 25, pp. 409–432, 2002.
[46]  P. Kalus, D. Senitz, and H. Beckmann, “Disturbances of corticogenesis in schizophrenia: morphological findings provide new evidence for the maldevelopmental hypothesis,” Neuropsychobiology, vol. 40, no. 1, pp. 1–13, 1999.
[47]  F. Bagorda, G. Teuchert-Noodt, and K. Lehmann, “Isolation rearing or methamphetamine traumatisation induce a "dysconnection" of prefrontal efferents in gerbils: implications for schizophrenia,” Journal of Neural Transmission, vol. 113, no. 3, pp. 365–379, 2006.
[48]  B. S. Wang, R. Sarnaik, and J. Cang, “Critical period plasticity matches binocular orientation preference in the visual cortex,” Neuron, vol. 65, no. 2, pp. 246–256, 2010.
[49]  D. H. Hubel and T. N. Wiesel, “The period of susceptibility to the physiological effects of unilateral eye closure in kittens,” Journal of Physiology, vol. 206, no. 2, pp. 419–436, 1970.
[50]  J. A. Gordon and M. P. Stryker, “Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse,” Journal of Neuroscience, vol. 16, no. 10, pp. 3274–3286, 1996.
[51]  K. Lehmann and S. L?wel, “Age-dependent ocular dominance plasticity in adult mice,” PLoS ONE, vol. 3, no. 9, Article ID e3120, 2008.
[52]  T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash, “Local GABA circuit control of experience-dependent plasticity in developing visual cortex,” Science, vol. 282, no. 5393, pp. 1504–1508, 1998.
[53]  M. Fagiolini and T. K. Hensch, “Inhibitory threshold for critical-period activation in primary visual cortex,” Nature, vol. 404, no. 6774, pp. 183–186, 2000.
[54]  T. K. Hensch, “Critical period regulation,” Annual Review of Neuroscience, vol. 27, pp. 549–579, 2004.
[55]  S. Sugiyama, A. A. Di Nardo, S. Aizawa et al., “Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity,” Cell, vol. 134, no. 3, pp. 508–520, 2008.
[56]  J. L. Hanover, Z. J. Huang, S. Tonegawa, and M. P. Stryker, “Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex,” The Journal of Neuroscience, vol. 19, no. 22, p. RC40, 1999.
[57]  Z. J. Huang, A. Kirkwood, T. Pizzorusso et al., “BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex,” Cell, vol. 98, no. 6, pp. 739–755, 1999.
[58]  J. F. M. Vetencourt, A. Sale, A. Viegi et al., “The antidepressant fluoxetine restores plasticity in the adult visual cortex,” Science, vol. 320, no. 5874, pp. 385–388, 2008.
[59]  A. Sale, J. F. Maya Vetencourt, P. Medini et al., “Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition,” Nature Neuroscience, vol. 10, no. 6, pp. 679–681, 2007.
[60]  A. Harauzov, M. Spolidoro, G. DiCristo et al., “Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity,” Journal of Neuroscience, vol. 30, no. 1, pp. 361–371, 2010.
[61]  D. G. Southwell, R. C. Froemke, A. Alvarez-Buylla, M. P. Stryker, and S. P. Gandhi, “Cortical plasticity induced by inhibitory neuron transplantation,” Science, vol. 327, no. 5969, pp. 1145–1148, 2010.
[62]  B. Morales, S. Y. Choi, and A. Kirkwood, “Dark rearing alters the development of GABAergic transmission in visual cortex,” Journal of Neuroscience, vol. 22, no. 18, pp. 8084–8090, 2002.
[63]  B. Chattopadhyaya, G. Di Cristo, H. Higashiyama et al., “Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period,” Journal of Neuroscience, vol. 24, no. 43, pp. 9598–9611, 2004.
[64]  A. H. Joliot, A. Triller, M. Volovitch, C. Pernelle, and A. Prochiantz, “α-2,8-polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide,” New Biologist, vol. 3, no. 11, pp. 1121–1134, 1991.
[65]  G. Di Cristo, B. Chattopadhyaya, S. J. Kuhlman et al., “Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity,” Nature Neuroscience, vol. 10, no. 12, pp. 1569–1577, 2007.
[66]  B. Chattopadhyaya, G. Di Cristo, C. Z. Wu et al., “GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex,” Neuron, vol. 54, no. 6, pp. 889–903, 2007.
[67]  Z. J. Huang, G. Di Cristo, and F. Ango, “Development of GABA innervation in the cerebral and cerebellar cortices,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 673–686, 2007.
[68]  X. Wu, Y. Fu, G. Knott, J. Lu, G. D. Cristo, and Z. Josh Huang, “GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons,” Journal of Neuroscience, vol. 32, no. 1, pp. 331–343, 2012.
[69]  L. A. Khibnik, K. K. A. Cho, and M. F. Bear, “Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex,” Neuron, vol. 66, no. 4, pp. 493–500, 2010.
[70]  A. Kleinschmidt, M. F. Bear, and W. Singer, “Blockade of 'NMDA' receptors disrupts experience dependent plasticity of kitten striate cortex,” Science, vol. 238, no. 4825, pp. 355–358, 1987.
[71]  N. B. Sawtell, M. Y. Frenkel, B. D. Philpot, K. Nakazawa, S. Tonegawa, and M. F. Bear, “NMDA receptor-dependent ocular dominance plasticity in adult visual cortex,” Neuron, vol. 38, no. 6, pp. 977–985, 2003.
[72]  M. Sato and M. P. Stryker, “Distinctive features of adult ocular dominance plasticity,” Journal of Neuroscience, vol. 28, no. 41, pp. 10278–10286, 2008.
[73]  K. Kameyama, K. Sohya, T. Ebina, A. Fukuda, Y. Yanagawa, and T. Tsumoto, “Difference in binocularity and ocular dominance plasticity between GABAergic and excitatory cortical neurons,” Journal of Neuroscience, vol. 30, no. 4, pp. 1551–1559, 2010.
[74]  Y. Yazaki-Sugiyama, S. Kang, H. Cteau, T. Fukai, and T. K. Hensch, “Bidirectional plasticity in fast-spiking GABA circuits by visual experience,” Nature, vol. 462, no. 7270, pp. 218–221, 2009.
[75]  Q. Q. Sun, “The missing piece in the “use it or lose it” puzzle: is inhibition regulated by activity or does it act on its own accord?” Reviews in the Neurosciences, vol. 18, no. 3-4, pp. 295–310, 2007.
[76]  Y. Jiao, C. Zhang, Y. Yanagawa, and Q. Q. Sun, “Major effects of sensory experiences on the neocortical inhibitory circuits,” Journal of Neuroscience, vol. 26, no. 34, pp. 8691–8701, 2006.
[77]  Y. Jiao, Z. Zhang, C. Zhang et al., “A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12131–12136, 2011.
[78]  Q. Q. Sun, “Experience-dependent intrinsic plasticity in interneurons of barrel cortex layer IV,” Journal of Neurophysiology, vol. 102, no. 5, pp. 2955–2973, 2009.
[79]  K. D. Micheva and C. Beaulieu, “An anatomical substrate for experience-dependent plasticity of the rat barrel field cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 25, pp. 11834–11838, 1995.
[80]  K. D. Micheva and C. Beaulieu, “Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: a review,” Canadian Journal of Physiology and Pharmacology, vol. 75, no. 5, pp. 470–478, 1997.
[81]  T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett, and L. Maffei, “Reactivation of ocular dominance plasticity in the adult visual cortex,” Science, vol. 298, no. 5596, pp. 1248–1251, 2002.
[82]  M. S. Lazarus and Z. Josh Huang, “Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity,” Journal of Neurophysiology, vol. 106, no. 2, pp. 775–787, 2011.
[83]  K. D. Micheva and C. Beaulieu, “Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry,” Journal of Comparative Neurology, vol. 373, no. 3, pp. 340–354, 1996.
[84]  K. Fox and R. O. L. Wong, “A comparison of experience-dependent plasticity in the visual and somatosensory systems,” Neuron, vol. 48, no. 3, pp. 465–477, 2005.
[85]  E. De Villers-Sidani, K. L. Simpson, Y. F. Lu, R. C. S. Lin, and M. M. Merzenich, “Manipulating critical period closure across different sectors of the primary auditory cortex,” Nature Neuroscience, vol. 11, no. 8, pp. 957–965, 2008.
[86]  T. R. Barkat, D. B. Polley, and T. K. Hensch, “A critical period for auditory thalamocortical connectivity,” Nature Neuroscience, vol. 14, pp. 1189–1194, 2011.
[87]  L. Frisen and M. Frisen, “How good is normal visual acuity? A study of letter acuity thresholds as a function of age,” Albrecht von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie, vol. 215, no. 3, pp. 149–157, 1980.
[88]  D. B. Elliott, K. C. H. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optometry and Vision Science, vol. 72, no. 3, pp. 186–191, 1995.
[89]  T. Ferrer-Blasco, J. M. González-Méijome, and R. Montés-Micó, “Age-related changes in the human visual system and prevalence of refractive conditions in patients attending an eye clinic,” Journal of Cataract and Refractive Surgery, vol. 34, no. 3, pp. 424–432, 2008.
[90]  K. Lehmann, K.-F. Schmidt, and S. L?wel, “Vision and visual plasticity in ageing mice,” Restorative Neurology and Neuroscience, vol. 30, no. 2, pp. 161–178, 2012.
[91]  P. D. Spear, “Neural bases of visual deficits during aging,” Vision Research, vol. 33, no. 18, pp. 2589–2609, 1993.
[92]  B. Godde, T. Berkefeld, M. David-Jürgens, and H. R. Dinse, “Age-related changes in primary somatosensory cortex of rats: evidence for parallel degenerative and plastic-adaptive processes,” Neuroscience and Biobehavioral Reviews, vol. 26, no. 7, pp. 743–752, 2002.
[93]  M. T. Schmolesky, Y. Wang, M. Pu, and A. G. Leventhal, “Degradation of stimulus selectivity of visual cortical cells in senescent rhesus monkeys,” Nature Neuroscience, vol. 3, no. 4, pp. 384–390, 2000.
[94]  A. G. Leventhal, Y. Wang, M. Pu, Y. Zhou, and Y. Ma, “GABA and its agonists improved visual cortical function in senescent monkeys,” Science, vol. 300, no. 5620, pp. 812–815, 2003.
[95]  T. Hua, X. Li, L. He, Y. Zhou, Y. Wang, and A. G. Leventhal, “Functional degradation of visual cortical cells in old cats,” Neurobiology of Aging, vol. 27, no. 1, pp. 155–162, 2006.
[96]  H. Wang, X. Xie, X. Li, B. Chen, and Y. Zhou, “Functional degradation of visual cortical cells in aged rats,” Brain Research, vol. 1122, no. 1, pp. 93–98, 2006.
[97]  T. Hua, C. Kao, Q. Sun, X. Li, and Y. Zhou, “Decreased proportion of GABA neurons accompanies age-related degradation of neuronal function in cat striate cortex,” Brain Research Bulletin, vol. 75, no. 1, pp. 119–125, 2008.
[98]  J. Bu, V. Sathyendra, N. Nagykery, and C. Geula, “Age-related changes in calbindin-D28k, calretinin, and parvalbumin-immunoreactive neurons in the human cerebral cortex,” Experimental Neurology, vol. 182, no. 1, pp. 220–231, 2003.
[99]  M. Pugliese, J. L. Carrasco, M. C. Geloso, J. Mascort, F. Michetti, and N. Mahy, “γ-aminobutyric acidergic interneuron vulnerability to aging in canine prefrontal cortex,” Journal of Neuroscience Research, vol. 77, no. 6, pp. 913–920, 2004.
[100]  B. V. Atallah, W. Bruns, M. Carandini, and M. Scanziani, “Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli,” Neuron, vol. 73, no. 1, pp. 159–170, 2012.
[101]  R. Mao, J. Schummers, U. Knoblich et al., “Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex,” Cerebral Cortex, vol. 22, no. 3, pp. 493–508, 2012.
[102]  R. Miettinen, J. Sirvio, P. Riekkinen, M. P. Laakso, M. Riekkinen, and P. Riekkinen, “Neocortical, hippocampal and septal parvalbumin- and somatostatin-containing neurons in young and aged rats: correlation with passive avoidance and water maze performance,” Neuroscience, vol. 53, no. 2, pp. 367–378, 1993.


comments powered by Disqus