全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Heteroscedastic Conditional Ordinal Random Fields for Pain Intensity Estimation from Facial Images

Full-Text   Cite this paper   Add to My Lib

Abstract:

We propose a novel method for automatic pain intensity estimation from facial images based on the framework of kernel Conditional Ordinal Random Fields (KCORF). We extend this framework to account for heteroscedasticity on the output labels(i.e., pain intensity scores) and introduce a novel dynamic features, dynamic ranks, that impose temporal ordinal constraints on the static ranks (i.e., intensity scores). Our experimental results show that the proposed approach outperforms state-of-the art methods for sequence classification with ordinal data and other ordinal regression models. The approach performs significantly better than other models in terms of Intra-Class Correlation measure, which is the most accepted evaluation measure in the tasks of facial behaviour intensity estimation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133