全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Blind Deconvolution with Non-local Sparsity Reweighting

Full-Text   Cite this paper   Add to My Lib

Abstract:

Blind deconvolution has made significant progress in the past decade. Most successful algorithms are classified either as Variational or Maximum a-Posteriori ($MAP$). In spite of the superior theoretical justification of variational techniques, carefully constructed $MAP$ algorithms have proven equally effective in practice. In this paper, we show that all successful $MAP$ and variational algorithms share a common framework, relying on the following key principles: sparsity promotion in the gradient domain, $l_2$ regularization for kernel estimation, and the use of convex (often quadratic) cost functions. Our observations lead to a unified understanding of the principles required for successful blind deconvolution. We incorporate these principles into a novel algorithm that improves significantly upon the state of the art.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133