All Title Author
Keywords Abstract


Invariant texture analysis through Local Binary Patterns

Full-Text   Cite this paper   Add to My Lib

Abstract:

In many image processing applications, such as segmentation and classification, the selection of robust features descriptors is crucial to improve the discrimination capabilities in real world scenarios. In particular, it is well known that image textures constitute power visual cues for feature extraction and classification. In the past few years the local binary pattern (LBP) approach, a texture descriptor method proposed by Ojala et al., has gained increased acceptance due to its computational simplicity and more importantly for encoding a powerful signature for describing textures. However, the original algorithm presents some limitations such as noise sensitivity and its lack of rotational invariance which have led to many proposals or extensions in order to overcome such limitations. In this paper we performed a quantitative study of the Ojala's original LBP proposal together with other recently proposed LBP extensions in the presence of rotational, illumination and noisy changes. In the experiments we have considered two different databases: Brodatz and CUReT for different sizes of LBP masks. Experimental results demonstrated the effectiveness and robustness of the described texture descriptors for images that are subjected to geometric or radiometric changes.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal