All Title Author
Keywords Abstract


Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

DOI: 10.4061/2011/873230

Full-Text   Cite this paper   Add to My Lib

Abstract:

Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents. 1. Introduction Trypanosomes are parasitic protists that cause significant human and animal diseases worldwide [1], among which it is important to highlight the species relevant for human health, such as sleeping sickness or African trypanosomiasis (Trypanosoma brucei), Chagas’ disease or American trypanosomiasis (Trypanosoma cruzi), and leishmaniasis (Leishmania spp.). The life cycle of these trypanosomatids is complex, presenting several developmental stages in different hosts. They have developed a digenetic life cycle with one or several vertebrate hosts and a hematophage insect vector that allows the transmission between them. A direct consequence is the environmental changes suffered among their life cycle thus, they have to adapt their metabolism to different nutrient availability [2]. Another feature of these parasites is the presence of nutritional requirements for several essential cofactors where heme is included. They totally or partially lack the heme biosynthetic pathway (revisited by Ko?eny et al. [3]). Heme plays a fundamental role in many cellular processes. It is an essential cofactor for proteins involved in oxygen transport and storage (hemoglobin and myoglobin), mitochondrial electron transport (Complex II–IV), drug and steroid metabolism (cytochromes), signal transduction (nitric oxide synthases, soluble guanylate cyclases), and transcription and regulation of antioxidant-defense enzymes. Heme is also a regulatory molecule; its cytosolic to

References

[1]  M. P. Barrett, R. J. S. Burchmore, A. Stich et al., “The trypanosomiases,” Lancet, vol. 362, no. 9394, pp. 1469–1480, 2003.
[2]  F. Bringaud, L. Rivière, and V. Coustou, “Energy metabolism of trypanosomatids: adaptation to available carbon sources,” Molecular and Biochemical Parasitology, vol. 149, no. 1, pp. 1–9, 2006.
[3]  L. Ko?eny, J. Luke?, and M. Oborník, “Evolution of the haem synthetic pathway in kinetoplastid flagellates: an essential pathway that is not essential after all?” International Journal for Parasitology, vol. 40, no. 2, pp. 149–156, 2010.
[4]  K. Furuyama, K. Kaneko, and P. D. Vargas, “Heme as a magnificient molecule with multiple missions: heme determines its own fate and governs cellular homeostasis,” Tohoku Journal of Experimental Medicine, vol. 213, no. 1, pp. 1–16, 2007.
[5]  S. W. Ryter and R. M. Tyrrell, “The heme synthesis and degradation pathways: role in oxidant sensitivity: heme oxygenase has both pro- and antioxidant properties,” Free Radical Biology and Medicine, vol. 28, no. 2, pp. 289–309, 2000.
[6]  C. T. Moraes, F. Diaz, and A. Barrientos, “Defects in the biosynthesis of mitochondrial heme c and heme a in yeast and mammals,” Biochimica et Biophysica Acta, vol. 1659, no. 2-3, pp. 153–159, 2004.
[7]  I. U. Heinemann, M. Jahn, and D. Jahn, “The biochemistry of heme biosynthesis,” Archives of Biochemistry and Biophysics, vol. 474, no. 2, pp. 238–251, 2008.
[8]  Y. Awa, N. Iwai, T. Ueda et al., “Isolation of a new antibiotic, alaremycin, structurally related to 5-aminolevulinic acid from Streptomyces sp. A012304,” Bioscience, Biotechnology and Biochemistry, vol. 69, no. 9, pp. 1721–1725, 2005.
[9]  G. Padmanaban and P. N. Rangarajan, “Heme metabolism of plasmodium is a major antimalarial target,” Biochemical and Biophysical Research Communications, vol. 268, no. 3, pp. 665–668, 2000.
[10]  A. U. Rao, L. K. Carta, E. Lesuisse, and I. Hamza, “Lack of heme synthesis in a free-living eukaryote,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 12, pp. 4270–4275, 2005.
[11]  G. Padmanaban, V. A. Nagaraj, and P. N. Rangarajan, “An alternative model for heme biosynthesis in the malarial parasite,” Trends in Biochemical Sciences, vol. 32, no. 10, pp. 443–449, 2007.
[12]  H. A. E. Dailey, Biosynthesis of Heme and Chlorophylls, McGraw-Hill, New York, NY, USA, 1990.
[13]  A. E. Medlockm and H. A. Dailey, “Tetrapyrroles,” in Tetrapyrroles: Birth, Life and Death, M. J. Warren and A. G. Smith, Eds., pp. 116–127, Landes Bioscience, Austin, Tex, USA, 2007.
[14]  S. Sato, B. Clough, L. Coates, and R. J. M. Wilson, “Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum,” Protist, vol. 155, no. 1, pp. 117–125, 2004.
[15]  V. A. Nagaraj, D. Prasad, P. N. Rangarajan, and G. Padmanaban, “Mitochondrial localization of functional ferrochelatase from Plasmodium falciparum,” Molecular and Biochemical Parasitology, vol. 168, no. 1, pp. 109–112, 2009.
[16]  P. Ponka, “Cell biology of heme,” American Journal of the Medical Sciences, vol. 318, no. 4, pp. 241–256, 1999.
[17]  C. Buchensky, P. Almirón, B. S. Mantilla, A. M. Silber, and J. A. Cricco, “The Trypanosoma cruzi proteins TcCox10 and TcCox15 catalyze the formation of heme A in the yeast Saccharomyces cerevisiae,” FEMS Microbiology Letters, vol. 312, no. 2, pp. 133–141, 2010.
[18]  T. M. Embley, M. Van Der Giezen, D. S. Horner et al., “Mitochondria and hydrogenosomes are two forms of the same fundamental organelle,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1429, pp. 191–203, 2003.
[19]  T. M. Embley, “Multiple secondary origins of the anaerobic lifestyle in eukaryotes,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1470, pp. 1055–1067, 2006.
[20]  G. R. C. Braz, H. S. L. Coelho, H. Masuda, and P. L. Oliveira, “A missing metabolic pathway in the cattle tick Boophilus microplus,” Current Biology, vol. 9, no. 13, pp. 703–706, 1999.
[21]  E. Ghedin, S. Wang, D. Spiro et al., “Draft genome of the filarial nematode parasite Brugia malayi,” Science, vol. 317, no. 5845, pp. 1756–1760, 2007.
[22]  F. A. Lara, U. Lins, G. Paiva-Silva et al., “A new intracellular pathway of haem detoxification in the midgut of the cattle tick Boophilus microplus: Aggregation inside a specialized organelle, the hemosome,” Journal of Experimental Biology, vol. 206, no. 10, pp. 1707–1715, 2003.
[23]  F. A. Lara, U. Lins, G. H. Bechara, and P. L. Oliveira, “Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus,” Journal of Experimental Biology, vol. 208, no. 16, pp. 3093–3101, 2005.
[24]  T. A. Salzman, A. M. Stella, E. A. Wider de Xifra, A. M. D. C. Batlle, R. Docampo, and A. O. M. Stoppani, “Porphyrin biosynthesis in parasitic hemoflagellates: Functional and defective enzymes in Trypanosoma cruzi,” Comparative Biochemistry and Physiology, Part B, vol. 72, no. 4, pp. 663–667, 1982.
[25]  M. E. Lombardo, L. S. Araujo, and A. Batlle, “5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi,” International Journal of Biochemistry and Cell Biology, vol. 35, no. 8, pp. 1263–1271, 2003.
[26]  M. Berriman, E. Ghedin, C. Hertz-Fowler et al., “The genome of the African trypanosome Trypanosoma brucei,” Science, vol. 309, no. 5733, pp. 416–422, 2005.
[27]  N. M. El-Sayed, P. J. Myler, D. C. Bartholomeu et al., “The genome sequence of Trypanosoma cruzi, etiologic agent of chagas disease,” Science, vol. 309, no. 5733, pp. 409–415, 2005.
[28]  M. Aslett, C. Aurrecoechea, M. Berriman et al., “TriTrypDB: a functional genomic resource for the Trypanosomatidae,” Nucleic Acids Research, vol. 38, no. 1, pp. D457–D462, 2009.
[29]  K. P. Chang and W. Trager, “Nutritional significance of symbiotic bacteria in two species of hemoflagellates,” Science, vol. 183, no. 4124, pp. 531–532, 1974.
[30]  K. P. Chang, C. S. Chang, and S. Sassa, “Heme biosynthesis in bacterium protozoon symbioses: enzymic defects in host hemoflagellates and complemental role of their intracellular symbiotes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 72, no. 8, pp. 2979–2983, 1975.
[31]  J. F. Sah, H. Ito, B. K. Kolli, D. A. Peterson, S. Sassa, and K. P. Chang, “Genetic rescue of Leishmania deficiency in porphyrin biosynthesis creates mutants suitable for analysis of cellular events in uroporphyria and for photodynamic therapy,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 14902–14909, 2002.
[32]  O. E. Akilov, S. Kosaka, K. O'riordan, and T. Hasan, “Parasiticidal effect of δ-aminolevulinic acid-based photodynamic therapy for cutaneous leishmaniasis is indirect and mediated through the killing of the host cells,” Experimental Dermatology, vol. 16, no. 8, pp. 651–660, 2007.
[33]  S. Dutta, K. Furuyama, S. Sassa, and K.-P. Chang, “Leishmania spp.: delta-aminolevulinate-inducible neogenesis of porphyria by genetic complementation of incomplete heme biosynthesis pathway,” Experimental Parasitology, vol. 118, no. 4, pp. 629–636, 2008.
[34]  A. C. Ivens, C. S. Peacock, E. A. Worthey et al., “The genome of the kinetoplastid parasite, Leishmania major,” Science, vol. 309, no. 5733, pp. 436–442, 2005.
[35]  S. Severance and I. Hamza, “Trafficking of heme and porphyrins in metazoa,” Chemical Reviews, vol. 109, no. 10, pp. 4596–4616, 2009.
[36]  A. D. Uttaro, “Biosynthesis of polyunsaturated fatty acids in lower eukaryotes,” IUBMB Life, vol. 58, no. 10, pp. 563–571, 2006.
[37]  B. M. Joubert, L. N. Nguyen, S. P. T. Matsuda, and F. S. Buckner, “Cloning and functional characterization of a Trypanosoma brucei lanosterol 14α-demethylase gene,” Molecular and Biochemical Parasitology, vol. 117, no. 1, pp. 115–117, 2001.
[38]  F. S. Buckner, B. M. Joubert, S. M. Boyle, R. T. Eastman, C. L. M. J. Verlinde, and S. P. T. Matsuda, “Cloning and analysis of Trypanosoma cruzi lanosterol 14α-demethylase,” Molecular and Biochemical Parasitology, vol. 132, no. 2, pp. 75–81, 2003.
[39]  K. E. J. Tripodi, L. V. Buttigliero, S. G. Altabe, and A. D. Uttaro, “Functional characterization of front-end desaturases from trypanosomatids depicts the first polyunsaturated fatty acid biosynthetic pathway from a parasitic protozoan,” FEBS Journal, vol. 273, no. 2, pp. 271–280, 2006.
[40]  V. I. Livore, K. E. J. Tripodi, and A. D. Uttaro, “Elongation of polyunsaturated fatty acids in trypanosomatids,” FEBS Journal, vol. 274, no. 1, pp. 264–274, 2007.
[41]  J. B. Schenkman and I. Jansson, “The many roles of cytochrome b,” Pharmacology and Therapeutics, vol. 97, no. 2, pp. 139–152, 2003.
[42]  M. A. Thiede, J. Ozols, and P. Strittmatter, “Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13230–13235, 1986.
[43]  J. A. Napier, O. Sayanova, P. Sperling, and E. Heinz, “A growing family of cytochrome b-domain fusion proteins,” Trends in Plant Science, vol. 4, no. 1, pp. 2–4, 1999.
[44]  A. G. Mitchell and C. E. Martin, “A novel cytochrome b-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae Δ-9 fatty acid desaturase,” Journal of Biological Chemistry, vol. 270, no. 50, pp. 29766–29772, 1995.
[45]  J. A. Napier, O. Sayanova, A. K. Stobart, and P. R. Shewry, “A new class of cytochrome b5 fusion proteins,” The Biochemical Journal, vol. 328, pp. 717–718, 1997.
[46]  W. C. Man, M. Miyazaki, K. Chu, and J. M. Ntambi, “Membrane topology of mouse stearoyl-CoA desaturase,” Journal of Biological Chemistry, vol. 281, no. 2, pp. 1251–1260, 2006.
[47]  A. R. Diaz, M. C. Mansilla, A. J. Vila, and D. De Mendoza, “Membrane topology of the acyl-lipid desaturase from Bacillus subtilis,” Journal of Biological Chemistry, vol. 277, no. 50, pp. 48099–48106, 2002.
[48]  A. Alloatti and A. D. Uttaro, “Highly specific methyl-end fatty-acid desaturases of trypanosomatids,” Molecular and Biochemical Parasitology, vol. 175, no. 2, pp. 126–132, 2011.
[49]  A. Alloatti, S. Gupta, M. Gualdrón-López et al., “Genetic and chemical evaluation of Trypanosoma brucei oleate desaturase as a candidate drug target,” PLoS One, vol. 5, no. 12, Article ID e14239, 2010.
[50]  C. K. Chen, S. S. F. Leung, C. Guilbert, M. P. Jacobson, J. H. Mckerrow, and L. M. Podust, “Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole,” PLoS Neglected Tropical Diseases, vol. 4, no. 4, article e651, 2010.
[51]  L. M. Podust, J. P. Von Kries, A. N. Eddine et al., “Small-molecule scaffolds for CYP51 inhibitors identified by high-throughput screening and defined by X-ray crystallography,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 11, pp. 3915–3923, 2007.
[52]  W. de Souza, M. Attias, and J. C. F. Rodrigues, “Particularities of mitochondrial structure in parasitic protists (Apicomplexa and Kinetoplastida),” International Journal of Biochemistry and Cell Biology, vol. 41, no. 10, pp. 2069–2080, 2009.
[53]  D. Stroebel, Y. Choquet, J. L. Popot, and D. Picot, “An atypical haem in the cytochrome bf complex,” Nature, vol. 426, no. 6965, pp. 413–418, 2003.
[54]  J. Yu and N. E. Le Brun, “Studies of the cytochrome subunits of menaquinone: cytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit,” Journal of Biological Chemistry, vol. 273, no. 15, pp. 8860–8866, 1998.
[55]  J. W. Priest and S. L. Hajduk, “Cytochrome c reductase purified from Crithidia fasciculata contains an atypical cytochrome c1,” Journal of Biological Chemistry, vol. 267, no. 28, pp. 20188–20195, 1992.
[56]  J. W. A. Allen, M. L. Ginger, and S. J. Ferguson, “Maturation of the unusual single-cysteine (XXXCH) mitochondrial c-type cytochromes found in trypanosomatids must occur through a novel biogenesis pathway,” Biochemical Journal, vol. 383, no. 3, pp. 537–542, 2004.
[57]  R. G. Kranz, C. Richard-Fogal, J. S. Taylor, and E. R. Frawley, “Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control,” Microbiology and Molecular Biology Reviews, vol. 73, no. 3, pp. 510–528, 2009.
[58]  J. M. Stevens, O. Daltrop, J. W. A. Allen, and S. J. Ferguson, “C-type cytochrome formation: chemical and biological enigmas,” Accounts of Chemical Research, vol. 37, no. 12, pp. 999–1007, 2004.
[59]  L. Th?ny-Meyer, “Biogenesis of respiratory cytochromes in bacteria,” Microbiology and Molecular Biology Reviews, vol. 61, no. 3, pp. 337–376, 1997.
[60]  O. Christensen, E. M. Harvat, L. Th?ny-Meyer, S. J. Ferguson, and J. M. Stevens, “Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE,” FEBS Journal, vol. 274, no. 9, pp. 2322–2332, 2007.
[61]  R. E. Feissner, C. L. Richard-Fogal, E. R. Frawley, and R. G. Kranz, “ABC transporter-mediated release of a haem chaperone allows cytochrome c biogenesis,” Molecular Microbiology, vol. 61, no. 1, pp. 219–231, 2006.
[62]  S. J. Ferguson, J. M. Stevens, J. W. A. Allen, and I. B. Robertson, “Cytochrome c assembly: a tale of ever increasing variation and mystery?” Biochimica et Biophysica Acta, vol. 1777, no. 7-8, pp. 980–984, 2008.
[63]  T. M. Embley and W. Martin, “Eukaryotic evolution, changes and challenges,” Nature, vol. 440, no. 7084, pp. 623–630, 2006.
[64]  R. E. Feissner, C. S. Beckett, J. A. Loughman, and R. G. Kranz, “Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis,” Journal of Bacteriology, vol. 187, no. 12, pp. 3941–3949, 2005.
[65]  D. G. Bernard, S. T. Gabilly, G. Dujardin, S. Merchant, and P. P. Hamel, “Overlapping specificities of the mitochondrial cytochrome c and c1 heme lyases,” Journal of Biological Chemistry, vol. 278, no. 50, pp. 49732–49742, 2003.
[66]  G. Kurisu, H. Zhang, J. L. Smith, and W. A. Cramer, “Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity,” Science, vol. 302, no. 5647, pp. 1009–1014, 2003.
[67]  J. W. A. Allen, A. P. Jackson, D. J. Rigden, A. C. Willis, S. J. Ferguson, and M. L. Ginger, “Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems?” FEBS Journal, vol. 275, no. 10, pp. 2385–2402, 2008.
[68]  V. Fül?p, K. A. Sam, S. J. Ferguson, M. L. Ginger, and J. W. A. Allen, “Structure of a trypanosomatid mitochondrial cytochrome c with heme attached via only one thioether bond and implications for the substrate recognition requirements of heme lyase,” FEBS Journal, vol. 276, no. 10, pp. 2822–2832, 2009.
[69]  M. H. Barros and A. Tzagoloff, “Regulation of the heme A biosynthetic pathway in Saccharomyces cerevisiae,” FEBS Letters, vol. 516, no. 1–3, pp. 119–123, 2002.
[70]  D. M. Glerum and A. Tzagoloff, “Isolation of a human cDNA for heme A:farnesyltransferase by functional complementation of a yeast cox10 mutant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 18, pp. 8452–8456, 1994.
[71]  D. M. Glerum, I. Muroff, C. Jin, and A. Tzagoloff, “COX15 codes for a mitochondrial protein essential for the assembly of yeast cytochrome oxidase,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 19088–19094, 1997.
[72]  A. Barrientos, M. H. Barros, I. Valnot, A. R?tig, P. Rustin, and A. Tzagoloff, “Cytochrome oxidase in health and disease,” Gene, vol. 286, no. 1, pp. 53–63, 2002.
[73]  H. Antonicka, S. C. Leary, G. H. Guercin et al., “Mutations in COX10 result in a defect in mitochondrial heme A biosynthesis and account for multiple, early-onset clinical phenotypes associated with isolated COX deficiency,” Human Molecular Genetics, vol. 12, no. 20, pp. 2693–2702, 2003.
[74]  B. E. Dwyer, M. L. Stone, N. Gorman et al., “Heme-a, the heme prosthetic group of cytochrome c oxidase, is increased in Alzheimer's disease,” Neuroscience Letters, vol. 461, no. 3, pp. 302–305, 2009.
[75]  M. Vitali, E. Venturelli, D. Galimberti, L. Benerini Gatta, E. Scarpini, and D. Finazzi, “Analysis of the genes coding for subunit 10 and 15 of cytochrome c oxidase in Alzheimer's disease,” Journal of Neural Transmission, vol. 116, no. 12, pp. 1635–1641, 2009.
[76]  M. Chaudhuri, R. D. Ott, and G. C. Hill, “Trypanosome alternative oxidase: from molecule to function,” Trends in Parasitology, vol. 22, no. 10, pp. 484–491, 2006.
[77]  F. R. Opperdoes and P. A. M. Michels, “Complex I of Trypanosomatidae: does it exist?” Trends in Parasitology, vol. 24, no. 7, pp. 310–317, 2008.
[78]  J. César Carranza, A. J. Kowaltowski, M. A. G. Mendon?a, T. C. De Oliveira, F. R. Gadelha, and B. Zingales, “Mitochondrial bioenergetics and redox state are unaltered in trypanosoma cruzi isolates with compromised mitochondrial complex i subunit genes,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 3, pp. 299–308, 2009.
[79]  J. Affranchino, M. N. Schwarcz De Tarlovsky, and A. O. M. Stopanni, “Terminal oxidases in the trypanosomatid Trypanosoma cruzi,” Comparative Biochemistry and Physiology, Part B, vol. 85, no. 2, pp. 381–388, 1986.
[80]  M. Ferella, D. Nilsson, H. Darban et al., “Proteomics in Trypanosoma cruzi—localization of novel proteins to various organelles,” Proteomics, vol. 8, no. 13, pp. 2735–2749, 2008.
[81]  A. Parodi-Talice, V. Monteiro-Goes, N. Arrambide et al., “Proteomic analysis of metacyclic trypomastigotes undergoing Trypanosoma cruzi metacyclogenesis,” Journal of Mass Spectrometry, vol. 42, no. 11, pp. 1422–1432, 2007.
[82]  T. H?usler, Y. D. Stierhof, J. Blattner, and C. Clayton, “Consevation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas,” European Journal of Cell Biology, vol. 73, no. 3, pp. 240–251, 1997.

Full-Text

comments powered by Disqus