
Mathematics 2002
Instanton Number Calculus on Noncommutative R^4DOI: 10.1088/11266708/2002/08/028 Abstract: In noncommutative spaces, it is unknown whether the Pontrjagin class gives integer, as well as, the relation between the instanton number and Pontrjagin class is not clear. Here we define ``Instanton number'' by the size of $B_{\alpha}$ in the ADHM construction. We show the analytical derivation of the noncommuatative U(1) instanton number as an integral of Pontrjagin class (instanton charge) with the Fock space representation. Our approach is for the arbitrary converge noncommutative U(1) instanton solution, and is based on the antiselfdual (ASD) equation itself. We give the Stokes' theorem for the number operator representation. The Stokes' theorem on the noncommutative space shows that instanton charge is given by some boundary sum. Using the ASD conditions, we conclude that the instanton charge is equivalent to the instanton number.
