全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2000 

Gromov-Hausdorff Distance for Quantum Metric Spaces

Full-Text   Cite this paper   Add to My Lib

Abstract:

By a quantum metric space we mean a C^*-algebra (or more generally an order-unit space) equipped with a generalization of the Lipschitz seminorm on functions which is defined by an ordinary metric. We develop for compact quantum metric spaces a version of Gromov-Hausdorff distance. We show that the basic theorems of the classical theory have natural quantum analogues. Our main example involves the quantum tori, $A_{\th}$. We show, for consistently defined ``metrics'', that if a sequence $\{\th_n\}$ of parameters converges to a parameter $\th$, then the sequence $\{A_{\th_n}\}$ of quantum tori converges in quantum Gromov-Hausdorff distance to $A_{\th}$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133