
Mathematics 1998
Two examples concerning almost continuous functionsAbstract: We construct, under the assumption that union of less than continuum many meager subsets of R is meager in R, an additive connectivity function f:R>R with Cantor intermediate value property which is not almost continuous. This gives a partial answer to a question of D. Banaszewski. We also show that every extendable function g:R>R with a dense graph satisfies the following stronger version of the SCIVP property: for every aR which has the strong Cantor intermediate value property but is not extendable. This answers a question of H. Rosen. This also generalizes Rosen's result that a similar (but not additive) function exists under the assumption of the continuum hypothesis.
