All Title Author
Keywords Abstract

Mathematics  1997 

Singular hermitian metrics on vector bundles

Full-Text   Cite this paper   Add to My Lib


We introduce a notion of singular hermitian metrics (s.h.m.) for holomorphic vector bundles and define positivity in view of $L^2$-estimates. Associated with a suitably positive s.h.m. there is a (coherent) sheaf 0-th kernel of a certain $d''$-complex. We prove a vanishing theorem for the cohomology of this sheaf. All this generalizes to the case of higher rank known results of Nadel for the case of line bundles. We introduce a new semi-positivity notion, $t$-nefness, for vector bundles, establish some of its basic properties and prove that on curves it coincides with ordinary nefness. We particularize the results on s.h.m. to the case of vector bundles of the form $E=F \otimes L$, where $F$ is a $t$-nef vector bundle and $L$ is a positive (in the sense of currents) line bundle. As applications we generalize to the higher rank case 1) Kawamata-Viehweg Vanishing Theorem, 2) the effective results concerning the global generation of jets for the adjoint to powers of ample line bundles, and 3) Matsusaka Big Theorem made effective.


comments powered by Disqus