All Title Author
Keywords Abstract

Mathematics  2011 

Regular decay of ball diameters and spectra of Ruelle operators for contact Anosov flows

Full-Text   Cite this paper   Add to My Lib


For Anosov flows on compact Riemann manifolds we study the rate of decay along the flow of diameters of balls $B^s(x,\ep)$ on local stable manifolds at Lyapunov regular points $x$. We prove that this decay rate is similar for all sufficiently small values of $\epsilon > 0$. From this and the main result in \cite{kn:St1}, we derive strong spectral estimates for Ruelle transfer operators for contact Anosov flows with Lipschitz local stable holonomy maps. These apply in particular to geodesic flows on compact locally symmetric manifolds of strictly negative curvature. As is now well known, such spectral estimates have deep implications in some related areas, e.g. in studying analytic properties of Ruelle zeta functions and partial differential operators, asymptotics of closed orbit counting functions, etc.


comments powered by Disqus