All Title Author
Keywords Abstract

Mathematics  2014 

Exponential Carmichael function

Full-Text   Cite this paper   Add to My Lib


Consider exponential Carmichael function $\lambda^{(e)}$ such that $\lambda^{(e)}$ is multiplicative and $\lambda^{(e)}(p^a) = \lambda(a)$, where $\lambda$ is usual Carmichael function. We discuss the value of $\sum \lambda^{(e)}(n)$, where $n$ runs over certain subsets of $[1,x]$, and provide bounds on the error term, using analytic methods and especially estimates of $\int_1^T \bigl| \zeta(\sigma+it) \bigr|^m dt$.


comments powered by Disqus