|
Mathematics 2012
A Cheeger Inequality for the Graph Connection LaplacianAbstract: The O(d) Synchronization problem consists of estimating a set of unknown orthogonal transformations O_i from noisy measurements of a subset of the pairwise ratios O_iO_j^{-1}. We formulate and prove a Cheeger-type inequality that relates a measure of how well it is possible to solve the O(d) synchronization problem with the spectra of an operator, the graph Connection Laplacian. We also show how this inequality provides a worst case performance guarantee for a spectral method to solve this problem.
|