全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

On convex hulls of orbits of Coxeter groups and Weyl groups

Full-Text   Cite this paper   Add to My Lib

Abstract:

The notion of a linear Coxeter system introduced by Vinberg generalizes the geometric representation of a Coxeter group. Our main theorem asserts that if $v$ is an element of the Tits cone of a linear Coxeter system and $\cW$ is the corresponding Coxeter group, then $\cW v \subeq v - C_v,$ where $C_v$ is the convex cone generated by the coroots $\check \alpha$, for which $\alpha(v) > 0$. This implies that the convex hull of $\cW v$ is completely determined by the image of $v$ under the reflections in $\cW$. We also apply an analogous result for convex hulls of $\cW$-orbits in the dual space, although this action need not correspond to a linear Coxeter system. Motivated by the applications in representation theory, we further extend these results to Weyl group orbits of locally finite and locally affine root systems. In the locally affine case, we also derive some applications on minimizing linear functionals on Weyl group orbits.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133