全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2012 

Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients

Full-Text   Cite this paper   Add to My Lib

Abstract:

The article begins with a quantitative version of the martingale central limit theorem, in terms of the Kantorovich distance. This result is then used in the study of the homogenization of discrete parabolic equations with random i.i.d. coefficients. For smooth initial condition, the rescaled solution of such an equation, once averaged over the randomness, is shown to converge polynomially fast to the solution of the homogenized equation, with an explicit exponent depending only on the dimension. Polynomial rate of homogenization for the averaged heat kernel, with an explicit exponent, is then derived. Similar results for elliptic equations are also presented.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133