All Title Author
Keywords Abstract

Mathematics  2015 

On measuring unboundedness of the $H^\infty$-calculus for generators of analytic semigroups

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigate the boundedness of the $H^\infty$-calculus by estimating the bound $b(\varepsilon)$ of the mapping $H^{\infty}\rightarrow \mathcal{B}(X)$: $f\mapsto f(A)T(\varepsilon)$ for $\varepsilon$ near zero. Here, $-A$ generates the analytic semigroup $T$ and $H^{\infty}$ is the space of bounded analytic functions on a domain strictly containing the spectrum of $A$. We show that $b(\varepsilon)=\mathcal{O}(|\log\varepsilon|)$ in general, whereas $b(\varepsilon)=\mathcal{O}(1)$ for bounded calculi. This generalizes a result by Vitse and complements work by Haase and Rozendaal for non-analytic semigroups. We discuss the sharpness of our bounds and show that single square function estimates yield $b(\varepsilon)=\mathcal{O}(\sqrt{|\log\varepsilon|})$.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal