All Title Author
Keywords Abstract

Mathematics  2009 

Admissible Strategies in Semimartingale Portfolio Selection

DOI: 10.1137/090774458

Full-Text   Cite this paper   Add to My Lib

Abstract:

The choice of admissible trading strategies in mathematical modelling of financial markets is a delicate issue, going back to Harrison and Kreps (1979). In the context of optimal portfolio selection with expected utility preferences this question has been a focus of considerable attention over the last twenty years. We propose a novel notion of admissibility that has many pleasant features - admissibility is characterized purely under the objective measure; each admissible strategy can be approximated by simple strategies using finite number of trading dates; the wealth of any admissible strategy is a supermartingale under all pricing measures; local boundedness of the price process is not required; neither strict monotonicity, strict concavity nor differentiability of the utility function are necessary; the definition encompasses both the classical mean-variance preferences and the monotone expected utility. For utility functions finite on the whole real line, our class represents a minimal set containing simple strategies which also contains the optimizer, under conditions that are milder than the celebrated reasonable asymptotic elasticity condition on the utility function.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal