全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Tail asymptotics for the maximum of perturbed random walk

DOI: 10.1214/105051606000000268

Full-Text   Cite this paper   Add to My Lib

Abstract:

Consider a random walk $S=(S_n:n\geq 0)$ that is ``perturbed'' by a stationary sequence $(\xi_n:n\geq 0)$ to produce the process $(S_n+\xi_n:n\geq0)$. This paper is concerned with computing the distribution of the all-time maximum $M_{\infty}=\max \{S_k+\xi_k:k\geq0\}$ of perturbed random walk with a negative drift. Such a maximum arises in several different applications settings, including production systems, communications networks and insurance risk. Our main results describe asymptotics for $\mathbb{P}(M_{\infty}>x)$ as $x\to\infty$. The tail asymptotics depend greatly on whether the $\xi_n$'s are light-tailed or heavy-tailed. In the light-tailed setting, the tail asymptotic is closely related to the Cram\'{e}r--Lundberg asymptotic for standard random walk.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133