All Title Author
Keywords Abstract

Mathematics  2009 

Occupation times of subcritical branching immigration systems with Markov motion, clt and deviations principles

DOI: 10.1142/S0219025712500026

Full-Text   Cite this paper   Add to My Lib


In this paper we consider two related stochastic models. The first one is a branching system consisting of particles moving according to a Markov family in R^d and undergoing subcritical branching with a constant rate of V>0. New particles immigrate to the system according to a homogeneous space time Poisson random field. The second model is the superprocess corresponding to the branching particle system. We study rescaled occupation time process and the process of its fluctuations with very mild assumptions on the Markov family. In the general setting a functional central limit theorem as well as large and moderate deviations principles are proved. The subcriticality of the branching law determines the behaviour in large time scales and in "overwhelms" the properties of the particles' motion. For this reason the results are the same for all dimensions and can be obtained for a wide class of Markov processes (both properties are unusual for systems with critical branching).


comments powered by Disqus

Contact Us


微信:OALib Journal