全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Degenerate elliptic operators in one dimension

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $H$ be the symmetric second-order differential operator on $L_2(\Ri)$ with domain $C_c^\infty(\Ri)$ and action $H\varphi=-(c \varphi')'$ where $ c\in W^{1,2}_{\rm loc}(\Ri)$ is a real function which is strictly positive on $\Ri\backslash\{0\}$ but with $c(0)=0$. We give a complete characterization of the self-adjoint extensions and the submarkovian extensions of $H$. In particular if $\nu=\nu_+\vee\nu_-$ where $\nu_\pm(x)=\pm\int^{\pm 1}_{\pm x} c^{-1}$ then $H$ has a unique self-adjoint extension if and only if $\nu\not\in L_2(0,1)$ and a unique submarkovian extension if and only if $\nu\not\in L_\infty(0,1)$. In both cases the corresponding semigroup leaves $L_2(0,\infty)$ and $L_2(-\infty,0)$ invariant. In addition we prove that for a general non-negative $ c\in W^{1,\infty}_{\rm loc}(\Ri)$ the corresponding operator $H$ has a unique submarkovian extension.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133