All Title Author
Keywords Abstract

Mathematics  2008 

The Kostant form of $\mathfrak{U}(sl_n^+)$ and the Borel subalgebra of the Schur algebra S(n,r)

Full-Text   Cite this paper   Add to My Lib


Let $A_n(K)$ be the Kostant form of $\mathfrak{U}(sl_n^+)$ and $\Gamma$ the monoid generated by the positive roots of $sl_n$. For each $\lambda\in \Lambda(n,r)$ we construct a functor $F_{\lambda}$ from the category of finitely generated $\Gamma$-graded $A_n(K)$-modules to the category of finite dimensional $S^+(n,r)$-modules, with the property that $F_{\lambda}$ maps (minimal) projective resolutions of the one-dimensional $A_n(K)$-module $K_{A}$ to (minimal) projective resolutions of the simple $S^+(n,r)$-module $K_{\lambda}$.


comments powered by Disqus