All Title Author
Keywords Abstract

Mathematics  2002 

Classification of Finite Alexander Quandles

Full-Text   Cite this paper   Add to My Lib


Two finite Alexander quandles with the same number of elements are isomorphic iff their Z[t,t^-1]-submodules Im(1-t) are isomorphic as modules. This yields specific conditions on when Alexander quandles of the form Z_n[t,t^-1]/(t-a) where gcd(n,a)=1 (called linear quandles) are isomorphic, as well as specific conditions on when two linear quandles are dual and which linear quandles are connected. We apply this result to obtain a procedure for classifying Alexander quandles of any finite order and as an application we list the numbers of distinct and connected Alexander quandles with up to fifteen elements.


comments powered by Disqus

Contact Us


微信:OALib Journal