All Title Author
Keywords Abstract

Mathematics  2012 

Exponential moments of self-intersection local times of stable random walks in subcritical dimensions

Full-Text   Cite this paper   Add to My Lib


Let $(X_t, t \geq 0)$ be an $\alpha$-stable random walk with values in $\Z^d$. Let $l_t(x) = \int_0^t \delta_x(X_s) ds$ be its local time. For $p>1$, not necessarily integer, $I_t = \sum_x l_t^p(x)$ is the so-called $p$-fold self- intersection local time of the random walk. When $p(d -\alpha) < d$, we derive precise logarithmic asymptotics of the probability $P(I_t \geq r_t)$ for all scales $r_t \gg \E(I_t)$. Our result extends previous works by Chen, Li and Rosen 2005, Becker and K\"onig 2010, and Laurent 2012.


comments powered by Disqus

Contact Us


微信:OALib Journal