全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Euler characteristic and quadrilaterals of normal surfaces

DOI: 10.1007/s12044-008-0015-7

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $M$ be a compact 3-manifold with a triangulation $\tau$. We give an inequality relating the Euler characteristic of a surface $F$ normally embedded in $M$ with the number of normal quadrilaterals in $F$. This gives a relation between a topological invariant of the surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and normal quadrilaterals of $F$, that depends on the maximum number of tetrahedrons that share a vertex in $\tau$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133