All Title Author
Keywords Abstract

Mathematics  2008 

Reduction principles for quantile and Bahadur-Kiefer processes of long-range dependent linear sequences

DOI: 10.1007/s00440-007-0107-9

Full-Text   Cite this paper   Add to My Lib


In this paper we consider quantile and Bahadur-Kiefer processes for long range dependent linear sequences. These processes, unlike in previous studies, are considered on the whole interval $(0,1)$. As it is well-known, quantile processes can have very erratic behavior on the tails. We overcome this problem by considering these processes with appropriate weight functions. In this way we conclude strong approximations that yield some remarkable phenomena that are not shared with i.i.d. sequences, including weak convergence of the Bahadur-Kiefer processes, a different pointwise behavior of the general and uniform Bahadur-Kiefer processes, and a somewhat "strange" behavior of the general quantile process.


comments powered by Disqus

Contact Us


微信:OALib Journal